Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Nutr ; 63(3): 965-976, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265751

ABSTRACT

PURPOSE: Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS: The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS: The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION: Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.


Subject(s)
Liver , Weight Cycling , Mice , Male , Animals , Liver/metabolism , Liver Cirrhosis , Weight Gain , Weight Loss , Mice, Inbred C57BL , Diet, High-Fat
2.
Biogerontology ; 24(3): 391-401, 2023 06.
Article in English | MEDLINE | ID: mdl-36802043

ABSTRACT

Non-alcoholic fatty liver disease is associated with ageing, and impaired mitochondrial homeostasis is the main cause for hepatic ageing. Caloric restriction (CR) is a promising therapeutic approach for fatty liver. The purpose of the present study was to investigate the possibility of early-onset CR in decelerating the progression of ageing-related steatohepatitis. The putative mechanism associated with mitochondria was further determined. C57BL/6 male mice at 8 weeks of age were randomly assigned to one of three treatments: Young-AL (AL, ad libitum), Aged-AL, or Aged-CR (60% intake of AL). Mice were sacrificed when they were 7 months old (Young) or 20 months old (Aged). Aged-AL mice displayed the greatest body weight, liver weight, and liver relative weight among treatments. Steatosis, lipid peroxidation, inflammation, and fibrosis coexisted in the aged liver. Mega mitochondria with short, randomly organized crista were noticed in the aged liver. The CR ameliorated these unfavourable outcomes. The level of hepatic ATP decreased with ageing, but this was reversed by CR. Ageing caused a decrease in mitochondrial-related protein expressions of respiratory chain complexes (NDUFB8 and SDHB) and fission (DRP1), but an increase in proteins related to mitochondrial biogenesis (TFAM), and fusion (MFN2). CR reversed the expression of these proteins in the aged liver. Both Aged-CR and Young-AL revealed a comparable pattern of protein expression. To summarize, this study demonstrated the potential of early-onset CR in preventing ageing-associated steatohepatitis, and maintaining mitochondrial functions may contribute to CR's protection during hepatic ageing.


Subject(s)
Caloric Restriction , Fatty Liver , Mice , Male , Animals , Mice, Inbred C57BL , Mitochondria , Fatty Liver/prevention & control , Aging/metabolism , Homeostasis
3.
J Biomed Sci ; 28(1): 58, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364371

ABSTRACT

Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.


Subject(s)
DNA Transposable Elements/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation/physiology , Genomic Instability/physiology , Animals , Humans
4.
Front Cell Dev Biol ; 9: 615098, 2021.
Article in English | MEDLINE | ID: mdl-33718357

ABSTRACT

Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.

5.
IEEE Trans Vis Comput Graph ; 19(8): 1354-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23744265

ABSTRACT

Properly handling parallax is important for video stabilization. Existing methods that achieve the aim require either 3D reconstruction or long feature trajectories to enforce the subspace or epipolar geometry constraints. In this paper, we present a robust and efficient technique that works on general videos. It achieves high-quality camera motion on videos where 3D reconstruction is difficult or long feature trajectories are not available. We represent each trajectory as a Bézier curve and maintain the spatial relations between trajectories by preserving the original offsets of neighboring curves. Our technique formulates stabilization as a spatial-temporal optimization problem that finds smooth feature trajectories and avoids visual distortion. The Bézier representation enables strong smoothness of each feature trajectory and reduces the number of variables in the optimization problem. We also stabilize videos in a streaming fashion to achieve scalability. The experiments show that our technique achieves high-quality camera motion on a variety of challenging videos that are difficult for existing methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...