Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Hum Genet ; 26(10): 1462-1477, 2018 10.
Article in English | MEDLINE | ID: mdl-29955172

ABSTRACT

Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic.


Subject(s)
Brain Diseases/genetics , Calcinosis/genetics , Cognitive Dysfunction/genetics , Genetic Variation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Diseases/physiopathology , Calcinosis/physiopathology , Child , Cognitive Dysfunction/physiopathology , Female , Heterozygote , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Proto-Oncogene Proteins c-sis/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, G-Protein-Coupled/drug effects , Receptors, Virus/drug effects , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Xenotropic and Polytropic Retrovirus Receptor , Young Adult
2.
Acta Neuropathol Commun ; 3: 19, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25853458

ABSTRACT

INTRODUCTION: Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial frontotemporal dementia, especially in the absence of motor neuron disease. RESULTS: We describe a pedigree presenting with a complex autosomal dominant disease, with a heterogeneous clinical phenotype, comprising unspecified dementia, parkinsonism, frontotemporal dementia and motor neuron disease. Genetic analyses identified a novel P112H TARDBP double variation located in exon 3 coding for the first RNA recognition motif of the protein (RRM1). This double mutation is probably pathogenic based on neuropathological findings, in silico prediction analysis and exome sequencing. The two autopsied siblings described here presented with frontotemporal dementia involving multiple cognitive domains and behavior but lacking symptoms of motor neuron disease throughout the disease course. The siblings presented with strikingly similar, although atypical, neuropathological features, including an unclassifiable TDP-43 inclusion pattern, a high burden of tau-negative ß-amyloid neuritic plaques with an AD-like biochemical profile, and an unclassifiable 4-repeat tauopathy. The co-occurrence of multiple protein inclusions points to a pathogenic mechanism that facilitates misfolded protein interaction and aggregation or a loss of TDP-43 function that somehow impairs protein clearance. CONCLUSIONS: TARDBP mutation screening should be considered in familial frontotemporal dementia cases, even without signs or symptoms of motor neuron disease, especially when other more frequent causes of genetic frontotemporal dementia (i.e. GRN, C9ORF72, MAPT) have been excluded and when family history is complex and includes parkinsonism, motor neuron disease and frontotemporal dementia. Further investigations in this family may provide insight into the physiological functions of TARDBP.


Subject(s)
Brain/pathology , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Plaque, Amyloid/pathology , Aged , Dementia/genetics , Dementia/pathology , Female , Humans , Inclusion Bodies/pathology , Male , Middle Aged , Motor Neuron Disease/genetics , Motor Neuron Disease/pathology , Mutation , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Pedigree , Siblings
3.
J Neurol Neurosurg Psychiatry ; 84(9): 956-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23543794

ABSTRACT

BACKGROUND: The aetiology and pathogenesis of non-genetic forms of frontotemporal dementia (FTD) is unknown and even with the genetic forms of FTD, pathogenesis remains elusive. Given the association between systemic inflammation and other neurodegenerative processes, links between autoimmunity and FTD need to be explored. OBJECTIVE: To describe the prevalence of systemic autoimmune disease in semantic variant primary progressive aphasia (svPPA), a clinical cohort, and in progranulin (PGRN) mutation carriers compared with neurologically healthy normal controls (NC) and Alzheimer's disease (AD) as dementia controls. DESIGN: Case control. SETTING: Academic medical centres. PARTICIPANTS: 129 svPPA, 39 PGRN, 186 NC and 158 AD patients underwent chart review for autoimmune conditions. A large subset of svPPA, PGRN and NC cohorts underwent serum analysis for tumour necrosis factor α (TNF-α) levels. OUTCOME MEASURES: χ(2) Comparison of autoimmune prevalence and follow-up logistic regression. RESULTS: There was a significantly increased risk of autoimmune disorders clustered around inflammatory arthritides, cutaneous disorders and gastrointestinal conditions in the svPPA and PGRN cohorts. Elevated TNF-α levels were observed in svPPA and PGRN compared with NC. CONCLUSIONS: svPPA and PGRN are associated with increased prevalence of specific and related autoimmune diseases compared with NC and AD. These findings suggest a unique pattern of systemic inflammation in svPPA and PGRN and open new research avenues for understanding and treating disorders associated with underlying transactive response DNA-binding protein 43 aggregation.


Subject(s)
Autoimmune Diseases/pathology , Frontotemporal Lobar Degeneration/pathology , TDP-43 Proteinopathies/pathology , Aged , Alzheimer Disease/pathology , Aphasia, Primary Progressive/pathology , Autoimmune Diseases/epidemiology , Autoimmune Diseases/psychology , Cohort Studies , Educational Status , Female , Frontotemporal Lobar Degeneration/epidemiology , Frontotemporal Lobar Degeneration/psychology , Humans , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Logistic Models , Male , Middle Aged , Mutation/physiology , Neuropsychological Tests , Prevalence , Progranulins , Psychiatric Status Rating Scales , TDP-43 Proteinopathies/epidemiology , Tumor Necrosis Factor-alpha/metabolism
4.
Neurogenetics ; 14(1): 11-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334463

ABSTRACT

Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41% of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation.


Subject(s)
Basal Ganglia Diseases/genetics , Calcinosis/genetics , Mutation , Neurodegenerative Diseases/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Adult , Aged , Amino Acid Sequence , Cohort Studies , DNA Mutational Analysis , Family , Female , Humans , Linkage Disequilibrium , Male , Middle Aged , Models, Biological , Molecular Sequence Data , Mutation/physiology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL