Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Exploration (Beijing) ; 4(2): 20220110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855615

ABSTRACT

Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.

2.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900294

ABSTRACT

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Subject(s)
Maze Learning , Mice, Knockout , Nuclear Receptor Co-Repressor 1 , Spatial Memory , Animals , Spatial Memory/physiology , Mice , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Maze Learning/physiology , Male , Mice, Inbred C57BL , Promoter Regions, Genetic , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Protein Serine-Threonine Kinases , Immediate-Early Proteins
3.
ACS Nano ; 18(23): 15046-15054, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804145

ABSTRACT

Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.

4.
Sci Adv ; 10(16): eadn2752, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38630828

ABSTRACT

Nonlocal effects originating from interactions between neighboring meta-atoms introduce additional degrees of freedom for peculiar characteristics of metadevices, such as enhancement, selectivity, and spatial modulation. However, they are generally difficult to manipulate because of the collective responses of multiple meta-atoms. Here, we experimentally demonstrate the nonlocal metasurface to realize the spatial modulation of dark-field emission. Plasmonic asymmetric split rings (ASRs) are designed to simultaneously excite local dipole resonance and nonlocal quasi-bound states in the continuum and spatially extended modes. With one type of unit, nonlocal effects are tailored by varying array periods. ASRs at the metasurface's edge lack sufficient interactions, resulting in stronger dark-field scattering and thus edge emission properties of the metasurface. Pixel-level spatial control is demonstrated by simply erasing some units, providing more flexibility than conventional local metasurfaces. This work paves the way for manipulating nonlocal effects and facilitates applications in optical trapping and sorting at the nanoscale.

5.
Opt Express ; 32(6): 9405-9419, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571176

ABSTRACT

In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2 platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.

6.
Vaccines (Basel) ; 12(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38400147

ABSTRACT

A pregnancy booster dose significantly reduces the risk and severity of COVID-19, and it is widely recommended. A prospective cohort study was conducted to compare the transplacental passage of maternal antibodies from vaccination or infection during three trimesters against both the vaccine-targeted Wuhan strain and the Omicron strain of SARS-CoV-2. Maternal-infant dyads from vaccinated mothers were collected between 6 June 2022 and 20 September 2022. We analyzed 38 maternal-infant dyads from mothers who had been infected with COVID-19 and 37 from mothers without any previous infection. Pregnant women who received their last COVID-19 vaccine dose in the third trimester exhibited the highest anti-spike protein antibody levels and neutralizing potency against both the Wuhan strain and Omicron BA.2 variant in their maternal and cord plasma. Both second- and third-trimester vaccination could lead to a higher level of neutralization against the Wuhan and Omicron strains. COVID-19 infection had a negative effect on the transplacental transfer ratio of SARS-CoV-2 antibodies. A booster dose during the second or third trimester is encouraged for the maximum transplacental transfer of humoral protection against COVID-19 for infants.

7.
Dis Model Mech ; 16(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37929799

ABSTRACT

To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , C-Reactive Protein , Diet, High-Fat , Mice, Transgenic , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , ErbB Receptors/genetics , Tumor Microenvironment
8.
Nano Lett ; 23(24): 11614-11620, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37937950

ABSTRACT

An analysis of the optical response of a GaN-based metalens was conducted alongside the utilization of two sequential artificial intelligence (AI) models in addressing the occasional issues of blurriness and color cast in captured images. The optical loss of the metalens in the blue spectral range was found to have resulted in the color cast of images. Autoencoder and CodeFormer sequential models were employed in order to correct the color cast and reconstruct image details, respectively. Said sequential models successfully addressed the color cast and reconstructed details for all of the allocated face image categories. Subsequently, the CIE 1931 chromaticity diagrams and peak signal-to-noise ratio analysis provided numerical evidence of the AI models' effectiveness in image reconstruction. Furthermore, the AI models can still repair the image without blue information. Overall, the integration of metalens and artificial intelligence models marks a breakthrough in enhancing the performance of full-color metalens-based imaging systems.

9.
Sensors (Basel) ; 23(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687994

ABSTRACT

The steel rail and wheel in the railway system offer a high precision and smooth-running surface. Nevertheless, the point of contact between the rail and wheel presents a critical area that can give rise to rail corrugation. This phenomenon can potentially elevate sound and vibration levels in the vicinity considerably, necessitating advanced monitoring and assessment measures. Recently, many efforts have been directed towards utilizing in-service trains for evaluating rail corrugation, and the evaluation has primarily relied on axle-box acceleration (ABA). However, the ABA measurements require a higher threshold for vibration detection. This study introduces a novel approach to rail corrugation detection by carriage floor acceleration (CFA), aimed at lowering the detection threshold. The method capitalizes on the acceleration data sensed on the carriage floor, which is induced by the sound pressure (e.g., sound-field excitation) generated at the wheel-rail contact point. An exploration of the correlation between these datasets is undertaken by simultaneously measuring both ABA and CFA. Moreover, a pivotal aspect of this research is the development of the eigenfrequency rail corrugation index (E-RCI), a mechanism that culminates energy around specific eigenfrequencies by CFA. Through this index, a focused analysis of rail corrugation patterns is facilitated. The study further delves into the stability, repeatability, and sensitivity of the E-RCI via varied measurement scenarios. Ultimately, the CFA-based rail corrugation identification is verified, establishing its practical applicability and offering a distinct approach to detecting and characterizing rail corrugation phenomena. This study has introduced an innovative methodology for rail corrugation detection using CFA, with the principal objective of lowering the detection threshold. This approach offers an efficient measurement technique for identifying rail corrugation areas, thereby potentially reducing maintenance costs and enhancing efficiency within the railway industry.

10.
Commun Biol ; 6(1): 389, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037996

ABSTRACT

Long-form collapsin response mediator protein-1 (LCRMP-1) belongs to the CRMP family which comprises brain-enriched proteins responsible for axon guidance. However, its role in spermatogenesis remains unclear. Here we find that LCRMP-1 is abundantly expressed in the testis. To characterize its physiological function, we generate LCRMP-1-deficient mice (Lcrmp-1-/-). These mice exhibit aberrant spermiation with apoptotic spermatids, oligospermia, and accumulation of immature testicular cells, contributing to reduced fertility. In the seminiferous epithelial cycle, LCRMP-1 expression pattern varies in a stage-dependent manner. LCRMP-1 is highly expressed in spermatids during spermatogenesis and especially localized to the spermiation machinery during spermiation. Mechanistically, LCRMP-1 deficiency causes disorganized F-actin due to unbalanced signaling of F-actin dynamics through upregulated PI3K-Akt-mTOR signaling. In conclusion, LCRMP-1 maintains spermatogenesis homeostasis by modulating cytoskeleton remodeling for spermatozoa release.


Subject(s)
Actins , Nerve Tissue Proteins , Spermatids , Animals , Male , Mice , Actins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , Nerve Tissue Proteins/metabolism
11.
PLoS One ; 18(4): e0283908, 2023.
Article in English | MEDLINE | ID: mdl-37023120

ABSTRACT

Long-term memory formation requires de novo RNA and protein synthesis. By using the differential display-polymerase chain reaction strategy, we have presently identified the Nedd4 family interacting protein 1 (Ndfip1) cDNA fragment that is differentially expressed between the slow learners and the fast learners from the water maze learning task in rats. Further, the fast learners show decreased Ndfip1 mRNA and protein expression levels than the slow learners. Spatial training similarly decreases the Ndfip1 mRNA and protein expression levels. Conversely, the Ndfip1 conditional heterozygous (cHet) mice show enhanced spatial memory performance compared to the Ndfip1flox/WT control mice. Result from co-immunoprecipitation experiment indicates that spatial training decreases the association between Ndfip1 and the E3 ubiquitin ligase Nedd4 (Nedd4-1), and we have shown that both Beclin 1 and PTEN are endogenous ubiquitination targets of Nedd4 in the hippocampus. Further, spatial training decreases endogenous Beclin 1 and PTEN ubiquitination, and increases Beclin 1 and PTEN expression in the hippocampus. On the other hand, the Becn1 conditional knockout (cKO) mice and the Pten cKO mice both show impaired spatial learning and memory performance. Moreover, the expression level of Beclin 1 and PTEN is higher in the Ndfip1 cHet mice compared with the Ndfip1flox/WT control mice. Here, we have identified Ndfip1 as a candidate novel negative regulation for spatial memory formation and this is associated with increased ubiquitination of Beclin 1 and PTEN in the hippocampus.


Subject(s)
Carrier Proteins , Endosomal Sorting Complexes Required for Transport , Animals , Mice , Rats , Beclin-1/metabolism , Carrier Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Messenger/metabolism , Spatial Memory , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
Opt Express ; 31(4): 6389-6400, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823896

ABSTRACT

To provide a solution to the issue of the non-flat focal surface in traditional Rowland AWGs, we have designed and implemented a Si3N4 three-stigmatic-point arrayed waveguide grating (TSP AWG) with three inputs, and a spectral resolving power over 17,000 has been achieved experimentally. The flat focal surface of this AWG can accommodate a butt-coupled detector array positioned at the output facet without any reduction of the resolving power of the edge channels. Therefore, it is particularly advantageous to some astronomical applications which require an AWG as a light-dispersing component to obtain a complete 2D spectrum. As a proof-of-concept for next generation devices, the multi-input aspect of the design accommodates multiple single-mode fibers coming into the AWG. In addition, because the device is implemented on a high-index-contrast platform (Si3N4/SiO2), a compact size of ∼9.3 × 9.3 mm2 is achieved.

13.
Sci Rep ; 13(1): 2368, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759577

ABSTRACT

This study experimentally investigated the evaporation and wetting transition behavior of fakir droplets on five different microstructured surfaces. Diamond-like carbon was introduced as the substrate, and the influence of varying the width, height, and pitch of the micropillars was assessed. The experimental results showed that the interfacial properties of the surfaces change the evaporation behavior and the starting point of the wetting transition. An important result of this study is the demonstration of a slippery superhydrophobic surface with low depinning force that suppresses the transition from the Cassie-Baxter state to the Wenzel state for microdroplets less than 0.37 mm in diameter, without employing large pillar height or multiscale roughness. By selecting an appropriate pillar pitch and employing tapered micropillars with small pillar widths, the solid-liquid contact at the three-phase contact line was reduced and low depinning forces were obtained. The underlying mechanism by which slippery superhydrophobic surfaces suppress wetting transitions is also discussed. The accuracy of the theoretical models for predicting the critical transition parameters was assessed, and a numerical model was developed in the surface evolver to compute the penetration of the droplet bottom meniscus within the micropillars.

14.
Sci Rep ; 13(1): 1641, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717640

ABSTRACT

We propose a hetero-nano-fin structure to further improve the efficiency of Pancharatnam-Berry phase metasurfaces. Two hetero-nano-fin types, MgF2/GaN and MgF2/Nb2O5, were investigated. The overall polarization conversion efficiency (PCE) improved from 52.7 to 54% for the MgF2/GaN nano-fin compared with the bare GaN nano-fin. The overall PCE of the Nb2O5 nano-fin was 1.7 times higher than that of the GaN nano-fin. The overall PCE improved from 92.4% up to 96% after the application of MgF2 antireflection. Moreover, the antireflection improves efficiency by an average of 4.3% in wavelengths from 450 to 700 nm. Although the increment of energy seems minimal, antireflection is crucial for a metasurface, not only enhancing efficiency but also reducing background signal of a meta-device.

15.
Cell Death Dis ; 13(12): 1060, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539411

ABSTRACT

Persistent Nrf2 activation is typically noted in many cancers, including colorectal cancer (CRC), aiding cancer cells in overcoming growth stress and promoting cancer progression. Sustained Nrf2 activation, which is beneficial for cancer cells, is called "Nrf2 addiction"; it is closely associated with malignancy and poor prognosis in patients with cancer. However, Nrf2 inhibitors may have adverse effects on normal cells. Here, we found that the selenocompound L-selenocystine (SeC) is selectively cytotoxic in the Nrf2-addicted CRC cell line WiDr cells, but not in non-Nrf2-addicted mesenchymal stem cells (MSCs) and normal human colon cells. Another CRC cell line, C2BBe1, which harbored lower levels of Nrf2 and its downstream proteins were less sensitive to SeC, compared with the WiDr cells. We further demonstrated that SeC inhibited Nrf2 and autophagy activation in the CRC cells. Antioxidant GSH pretreatment partially rescued the CRC cells from SeC-induced cytotoxicity and Nrf2 and autophagy pathway inhibition. By contrast, SeC activated Nrf2 and autophagy pathway in non-Nrf2-addicted MSCs. Transfecting WiDr cells with Nrf2-targeting siRNA decreased persistent Nrf2 activation and alleviated SeC cytotoxicity. In KEAP1-knockdown C2BBe1 cells, Nrf2 pathway activation increased SeC sensitivity and cytotoxicity. In conclusion, SeC selectively attacks cancer cells with constitutively activated Nrf2 by reducing Nrf2 and autophagy pathway protein expression through the P62-Nrf2-antioxidant response element axis and eventually trigger cell death.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Autophagy , Colorectal Neoplasms/drug therapy , Oxidative Stress , Sequestosome-1 Protein/metabolism
16.
Chem Biol Interact ; 365: 110046, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35863474

ABSTRACT

Selenocystine (SeC) has been identified as a novel compound with broad-spectrum anticancer activity. However, the effects of SeC on modifying DNA repair mechanism were less addressed. In this study, we demonstrated that SeC selectively induced cytotoxicity and genotoxicity against HepG2 hepatoma cell line. Comet assay revealed SeC-induced DNA damage in HepG2 cells, particularly in the form of DNA double strand breaks (DSBs), corroborated by the increase expression of the DSB marker, gamma-H2AX. We further demonstrated that SeC suppressed DNA homologous recombination repair, exacerbating DNA damage accumulation. Such effects on DNA damage and cell viability inhibition were alleviated by antioxidants, glutathione and Trolox, suggesting the involvement of reactive oxygen species (ROS). High levels of intracellular and mitochondrial ROS were detected in SeC-treated HepG2. In addition, SeC impaired the expression of antioxidant enzymes (superoxidase mutases and catalase), prompting the imbalance between antioxidant protection and excessive ROS formation and eliciting DSBs and cellular death. Decreased procaspase-3, 7, and 9 and Bcl-2 proteins and an increased Bax/Bcl-2 ratio, were observed after SeC treatment, but could be reversed by Torlox, confirming the action of SeC on ROS-induced apoptosis. In vivo, the xenograft tumor model of HepG2 cells validated the inhibition of SeC on tumor growth, and the induction of DSBs and apoptosis. In summary, SeC has the capability to induce ROS-dependent DNA damage and impeded DBS repair in HepG2 cells. Thus, SeC holds great promise as a therapeutic or adjuvant agent targeting DNA repair for cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Antioxidants/metabolism , Carcinoma, Hepatocellular/drug therapy , Cystine/analogs & derivatives , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , Humans , Liver Neoplasms/drug therapy , Organoselenium Compounds , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Recombinational DNA Repair
17.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745310

ABSTRACT

Flat optics, metasurfaces, metalenses, and related materials promise novel on-demand light modulation within ultrathin layers at wavelength scale, enabling a plethora of next-generation optical devices, also known as metadevices. Metadevices designed with different materials have been proposed and demonstrated for different applications, and the mass production of metadevices is necessary for metadevices to enter the consumer electronics market. However, metadevice manufacturing processes are mainly based on electron beam lithography, which exhibits low productivity and high costs for mass production. Therefore, processes compatible with standard complementary metal-oxide-semiconductor manufacturing techniques that feature high productivity, such as i-line stepper and nanoimprint lithography, have received considerable attention. This paper provides a review of current metasurfaces and metadevices with a focus on materials and manufacturing processes. We also provide an analysis of the relationship between the aspect ratio and efficiency of different materials.

18.
Heliyon ; 8(3): e09001, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35224237

ABSTRACT

The globally occurring recurrent waves of the COVID-19 pandemic, primarily caused by the transmission of aerosolized droplets from an infected person to a healthy person in the indoor environment, has led to the urgency of designing new modes of indoor ventilation. To prevent cross-contaminations due to airborne viruses, bacteria, and other pollutants in indoor environments, heating ventilation and air-conditioning (HVAC) systems need to be redesigned with anti-pandemic components. The three vital anti-pandemic components for the post-COVID-19 HVAC systems, as identified by the authors, are: a biological contaminant inactivation unit, a volatile organic compound decomposition unit, and an advanced air filtration unit. The purpose of the current article is to provide an overview of the latest research outcomes toward designing these anti-pandemic components and pointing out the future promises and challenges. In addition, the role of personalized ventilation in minimizing the risk of indoor cross-contamination by employing various air terminal devices is discussed. The authors believe that this article will encourage HVAC designers to develop effective anti-pandemic components to minimize the indoor airborne transmission.

19.
Phys Rev E ; 104(4-2): 045105, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781536

ABSTRACT

Pore structures and gas transport properties in porous separators for polymer electrolyte fuel cells are evaluated both experimentally and through simulations. In the experiments, the gas permeabilities of two porous samples, a conventional sample and one with low electrical resistivity, are measured by a capillary flow porometer, and the pore size distributions are evaluated with mercury porosimetry. Local pore structures are directly observed with micro-x-ray computed tomography (CT). In the simulations, the effective diffusion coefficients of oxygen and the air permeability in porous samples are calculated using random walk Monte Carlo simulations and computational fluid dynamics (CFD) simulations, respectively, based on the x-ray CT images. The calculated porosities and air permeabilities of the porous samples are in good agreement with the experimental values. The simulation results also show that the in-plane permeability is twice the through-plane permeability in the conventional sample, whereas it is slightly higher in the low-resistivity sample. The results of this study show that CFD simulation based on micro-x-ray CT images makes it possible to evaluate anisotropic gas permeabilities in anisotropic porous media.

20.
Electrophoresis ; 42(21-22): 2206-2214, 2021 11.
Article in English | MEDLINE | ID: mdl-34472124

ABSTRACT

Resistive pulse sensing using solid-state nanopores provides a unique platform for detecting the structure and concentration of molecules of different types of analytes in an electrolyte solution. The capture of an entity into a nanopore is subject not only to the electrostatic force but also the effect of electroosmotic flow originating from the charged nanopore surface. In this study, we theoretically analyze spherical particle electrophoretic behavior near the entrance of a charged nanopore. By investigating the effects of pore size, particle-pore distance, and salt concentration on particle velocity, we summarize dominant mechanisms governing particle behavior for a range of conditions. In the literature, the Helmholtz-Smoluchowski equation is often adopted to evaluate particle translocation by considering the zeta potential difference between the particle and nanopore surfaces. We point out that, due to the difference of the electric field inside and outside the nanopore and the influence from the existence of the particle itself, the zeta potential of the particle, however, needs to be at least 30% higher than that of the nanopore to allow the particle to enter into the nanopore when its velocity is close to zero. Accordingly, we summarize the effective salt concentrations that enable successful particle capture and detection for different pore sizes, offering direct guidance for nanopore applications.


Subject(s)
Electrophoresis , Nanopores , Electricity , Electroosmosis , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...