Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(2): 105995, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36687314

ABSTRACT

The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.

2.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112150, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34656814

ABSTRACT

In the initial stage of myocardial infarction (MI), cardiomyocyte necrosis activates aninflammatory response and increases the reactive oxygen species (ROS) content. Graphene oxide (GO) possesses potential antioxidant properties and can provide the adequate mechanical support for cell growth. The clinical studies showed that direct injection of Wharton's jelly mesenchymal stem cells (WJ-MSCs) into infarcted areas of myocardium can reduce apoptosis and fibrosis. Gelatin is a natural polymer and can promote cell attachment. Nanoclay laponite with shear-thinning properties can be injected and gelled in-situ without chemical triggers. In the study, injectable GO/laponite/gelatin (GO-LG) hydrogel was developed and characterized. The results of cell viability showed that the optimal concentration of GO flasks (200 to 300 nm) to treat cells was 100 µg/ml. Addition of nanosized GO to the laponite/gelatin (LG) hydrogel could increase the mechanical strength and have both hemocompatibility and cytocompatibility. The release of GO from LG hydrogel could inhibit the H2O2-induced oxidative stress. The GO-LG hydrogel containing WJ-MSCs could decrease inflammation and apoptosis level and increase the cell viability of cardiomyocytes under oxidative stress. We believe that utilizing this newly developed GO-LG hydrogel containing WJ-MSCs may have potential applications in the future for treatment of MI.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Animals , Cell Differentiation , Cells, Cultured , Gelatin , Graphite , Humans , Hydrogels , Hydrogen Peroxide , Myocytes, Cardiac , Oxidative Stress , Rats , Silicates
3.
J Biomed Sci ; 28(1): 43, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34098950

ABSTRACT

BACKGROUND: Coronavirus disease 19 (COVID-19) first appeared in the city of Wuhan, in the Hubei province of China. Since its emergence, the COVID-19-causing virus, SARS-CoV-2, has been rapidly transmitted around the globe, overwhelming the medical care systems in many countries and leading to more than 3.3 million deaths. Identification of immunological epitopes on the virus would be highly useful for the development of diagnostic tools and vaccines that will be critical to limiting further spread of COVID-19. METHODS: To find disease-specific B-cell epitopes that correspond to or mimic natural epitopes, we used phage display technology to determine the targets of specific antibodies present in the sera of immune-responsive COVID-19 patients. Enzyme-linked immunosorbent assays were further applied to assess competitive antibody binding and serological detection. VaxiJen, BepiPred-2.0 and DiscoTope 2.0 were utilized for B-cell epitope prediction. PyMOL was used for protein structural analysis. RESULTS: 36 enriched peptides were identified by biopanning with antibodies from two COVID-19 patients; the peptides 4 motifs with consensus residues corresponding to two potential B-cell epitopes on SARS-CoV-2 viral proteins. The putative epitopes and hit peptides were then synthesized for validation by competitive antibody binding and serological detection. CONCLUSIONS: The identified B-cell epitopes on SARS-CoV-2 may aid investigations into COVID-19 pathogenesis and facilitate the development of epitope-based serological diagnostics and vaccines.


Subject(s)
COVID-19 , Epitopes, B-Lymphocyte , Peptide Library , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/immunology
4.
Nano Lett ; 20(2): 1089-1100, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31884787

ABSTRACT

Biomolecules that respond to different external stimuli enable the remote control of genetically modified cells. We report herein a sonogenetic approach that can manipulate target cell activities by focused ultrasound stimulation. This system requires an ultrasound-responsive protein derived from an engineered auditory-sensing protein prestin. Heterologous expression of mouse prestin containing two parallel amino acid substitutions, N7T and N308S, that frequently exist in prestins from echolocating species endowed transfected mammalian cells with the ability to sense ultrasound. An ultrasound pulse of low frequency and low pressure efficiently evoked cellular calcium responses after transfecting with prestin(N7T, N308S). Moreover, pulsed ultrasound can also noninvasively stimulate target neurons expressing prestin(N7T, N308S) in deep regions of mouse brains. Our study delineates how an engineered auditory-sensing protein can cause mammalian cells to sense ultrasound stimulation. Moreover, our sonogenetic tools will serve as new strategies for noninvasive therapy in deep tissues.


Subject(s)
Brain/metabolism , Hearing/genetics , Molecular Motor Proteins/genetics , Neurons/metabolism , Animals , Echolocation , Hearing/physiology , Humans , Mice , Molecular Motor Proteins/chemistry , Neurons/chemistry , Protein Engineering/methods , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL