Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 653, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253575

ABSTRACT

Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.

2.
ACS Appl Mater Interfaces ; 15(12): 16153-16161, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36802501

ABSTRACT

Layered transition metal dichalcogenides (TMDs) are two-dimensional materials exhibiting a variety of unique features with great potential for electronic and optoelectronic applications. The performance of devices fabricated with mono or few-layer TMD materials, nevertheless, is significantly affected by surface defects in the TMD materials. Recent efforts have been focused on delicate control of growth conditions to reduce the defect density, whereas the preparation of a defect-free surface remains challenging. Here, we show a counterintuitive approach to decrease surface defects on layered TMDs: a two-step process including Ar ion bombardment and subsequent annealing. With this approach, the defects, mainly Te vacancies, on the as-cleaved PtTe2 and PdTe2 surfaces were decreased by more than 99%, giving a defect density <1.0 × 1010 cm-2, which cannot be achieved solely with annealing. We also attempt to propose a mechanism behind the processes.

3.
ACS Appl Mater Interfaces ; 14(14): 16901-16910, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35357129

ABSTRACT

Organic-molecular magnets based on a metal-organic framework with chemically tuned electronic and magnetic properties have been attracting tremendous attention due to their promising applications in molecular magnetic sensors, magnetic particle medicines, molecular spintronics, etc. Here, we investigated the magnetic behavior of a heterojunction comprising a ferromagnetic nickel (Ni) film and an organic semiconductor (OSC) 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) layer. Through the magneto-optical Kerr effect (MOKE), a photoemission electron microscopy (PEEM), X-ray magnetic circular dichroism (XMCD), and X-ray photoelectron spectroscopy (XPS), we found that the adsorption of F4-TCNQ on Cu(100)/Ni not only reverses the in-plane magnetization direction originally exhibited by the Ni layer but also results in enhanced magnetic ordering. Furthermore, the cyano group (CN) in adsorbed F4-TCNQ was found spin-polarized along with conspicuous charge transfer with Ni. The density functional theory (DFT) calculations suggest that the experimentally found spin polarization originates from hybridization between the CN group's π orbitals and Ni's d band. These findings signify that the hybrid states at the organic-ferromagnet interface play a key role in tailoring the magnetic behavior of interfaces. For the case of the F4-TCNQ and Ni heterojunction reported here, interface coupling is an antiferromagnetic one.

4.
J Chem Phys ; 155(7): 074701, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418937

ABSTRACT

We studied the dissociation of water (H2O*, with * denoting adspecies) on atomic oxygen (O*)-covered Rh nanoclusters (RhO* ) supported on a graphene film grown on a Ru(0001) surface [G/Ru(0001)] under ultrahigh-vacuum conditions and with varied surface-probe techniques and calculations based on density-functional theory. The graphene had a single rotational domain; its lattice expanded by about 5.7% to match the Ru substrate structurally better. The Rh clusters were grown by depositing Rh vapors onto G/Ru(0001); they had an fcc phase and grew in (111) orientation. Water adsorbed on the Rh clusters was dissociated exclusively in the presence of O*, like that on a Rh(111) single-crystal surface. Contrary to the case on Rh(111)O* , excess O* (even at a saturation level) on small RhO* clusters (diameter of 30-34 Å) continued to promote, instead of inhibiting, the dissociation of water; the produced hydroxyl (OH*) increased generally with the concentration of O* on the clusters. The difference results from more reactive O* on the RhO* clusters. O* on RhO* clusters activated the dissociation via both the formation of hydrogen bonds with H2O* and abstraction of H directly from H2O*, whereas O* on Rh(111)O* assisted the dissociation largely via the formation of hydrogen bonds, which was readily obstructed with an increased O* coverage. As the disproportionation (2 OH* → H2O* + O*) is endothermic on the RhO* clusters but exothermic on Rh(111)O* , OH* produced on RhO* clusters showed a thermal stability superior to that on the Rh(111)O* surface-thermally stable up to 400 K.

5.
RSC Adv ; 11(40): 24762-24771, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35481058

ABSTRACT

Annealed Rh nanoclusters on an ordered thin film of Al2O3/NiAl(100) were shown to exhibit a promoted reactivity toward the decomposition of methanol-d4, under both ultrahigh vacuum and near-ambient-pressure conditions. The Rh clusters were grown with vapor deposition onto the Al2O3/NiAl(100) surface at 300 K and annealed to 700 K. The decomposition of methanol-d4 proceeded only through dehydrogenation, with CO and deuterium as products, on Rh clusters both as prepared and annealed. Nevertheless, the catalytic reactivity of the annealed clusters, measured with the production of either CO or deuterium per surface Rh site from the reaction, became at least 2-3 times that of the as-prepared ones. The promoted reactivity results from an altered support effect associated with an annealing-induced mass transport at the surface. Our results demonstrate a possibility to practically prepare reactive Rh clusters, regardless of the cluster size, that can tolerate an elevated reaction temperature, with no decreased reactivity.

6.
RSC Adv ; 10(30): 17787-17794, 2020 May 05.
Article in English | MEDLINE | ID: mdl-35515600

ABSTRACT

We have studied the reforming reaction of ethanol co-adsorbed with atomic oxygen (O*, * denotes adspecies) and deuterated water (D2O*) on a Rh(111) surface, with varied surface probe techniques under UHV conditions and with density-functional-theory calculations. Adsorbed ethanol molecules were found to penetrate readily through pre-adsorbed water, even up to eight overlayers, to react at the Rh surface; they decomposed at a probability promoted by the water overlayers. The production probabilities of H2, CO, CH2CH2 and CH4 continued to increase with co-adsorbed D2O*, up to two D2O overlayers, despite separate increasing rates; above two D2O overlayers, those of H2, CO and CH2CH2 were approximately saturated while that of CH4 decreased. The increased (or saturated) production probabilities are rationalized with an increased (saturated) concentration of surface hydroxyl (OD*, formed by O* abstracting D from D2O*), whose intermolecular hydrogen bonding with adsorbed ethanol facilitates proton transfer from ethanol to OD* and thus enhances the reaction probability. The decreasing behavior of CH4 could also involve the competition for H* with the formation of H2 and HDO.

7.
Adv Mater ; 30(30): e1801401, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29883002

ABSTRACT

The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA2 MAn-1 Pbn I3n+1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm-2 , and a remarkable fill factor of 80.36%.


Subject(s)
Calcium Compounds/chemistry , Oxides/chemistry , Titanium/chemistry , Solar Energy
8.
Phys Chem Chem Phys ; 20(2): 1261-1266, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29250624

ABSTRACT

The dissociation of water molecules absorbed on a cleaved non-polar GaN(11[combining macron]00) surface was studied primarily with synchrotron-based photoemission spectra and density-functional-theory calculations. The adsorbed water molecules are spontaneously dissociated into hydrogen atoms and hydroxyl groups at either 300 or 130 K, which implies a negligible activation energy (<11 meV) for the dissociation. The produced H and OH were bound to the surface nitrogen and gallium on GaN(11[combining macron]00) respectively. These results highlight the promising applications of the non-polar GaN(11[combining macron]00) surface in water dissociation and hydrogen generation.

9.
Phys Chem Chem Phys ; 19(22): 14566-14579, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537293

ABSTRACT

Self-organized alloying of Au with Rh in nanoclusters on an ordered thin film of Al2O3/NiAl(100) was investigated via various surface probe techniques under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed on the sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. The formation was more effective on the oxide seeded with Rh, since all post-deposited Au joined the pregrown Rh clusters; for metal deposition in the reverse order, some separate Rh clusters were formed. The contrasting behavior is rationalized through the easier nucleation of Rh on the oxide surface, due to the stronger Rh-oxide and Rh-Rh bonds. The alloying in the clusters proceeded, regardless of the order of metal deposition, toward a specific structure: an fcc phase, (100) orientation and Rh core-Au shell structure. The orientation, structural ordering and lattice parameters of the Au-Rh bimetallic clusters resembled Rh clusters, rather than Au clusters, on Al2O3/NiAl(100), even with Rh in a minor proportion. The Rh-predominated core-shell structuring corresponds to the binding energies in the order Rh-Rh > Rh-Au > Au-Au. The core-shell segregation, although active, was somewhat kinetically hindered, since elevating the sample temperature induced further encapsulation of Rh. The bimetallic clusters became thermally unstable above 500 K, for which both Rh and Au atoms began to diffuse into the substrate. Moreover, the electronic structures of surface elements on the bimetallic clusters, controlled by both structural and electronic effects, show a promising reactivity.

10.
ACS Appl Mater Interfaces ; 9(3): 2232-2239, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28004922

ABSTRACT

A nanocomposite layer comprising the conjugated polymer poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] (PFN) and nickel oxide (NiOx) has been employed as the hole transport layer (HTL) in organic photovoltaics (OPVs) featuring PBDTTBO-C8 and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the active layer. The optimal device incorporating the PFN:NiOx nanocomposite as the HTLs displayed a power conversion efficiency (PCE) to 6.2%, up from 4.5% for the corresponding device incorporating pristine NiOx as the HTL layer: a nearly 40% improvement in PCE. X-ray photoelectron spectroscopy (XPS) was used to determine the types of chemical bonding, ultraviolet photoelectron spectroscopy (UPS) to measure the change in work function, and atomic force microscopy (AFM) to examine the morphology of the composite layers. The growth of nickel trioxide, Ni2O3, in the PFN:NiOx layer played a key role in producing the p-doping effect and in tuning the work function, thereby improving the overall device performance.

11.
Adv Mater ; 26(24): 4107-13, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24687334

ABSTRACT

This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance.

12.
Phys Chem Chem Phys ; 16(13): 6033-40, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24553998

ABSTRACT

A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight.

13.
J Phys Chem Lett ; 4(2): 310-6, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-26283440

ABSTRACT

To realize the origin of efficient spin injection at organic-ferromagnetic contact in organic spintronics, we have implemented the formation of quasi-molecular magnet via surface restructuring of a strong organic acceptor, tetrafluoro-tetracyano-quinodimethane (F4-TCNQ), in contact with ferromagnetic cobalt. Our results demonstrate a spin-polarized F4-TCNQ layer and a remarkably enhanced magnetic anisotropy of the Co film. The novel magnetic properties are contributed from strong magnetic coupling caused by the molecular restructuring that displays an angular anchoring conformation of CN and upwardly protruding fluorine atoms. We conclude that the π bonds of CN, instead of the lone-pair electrons of N atoms, contribute to the hybridization-induced magnetic coupling between CN and Co and generate a superior magnetic order on the surface.

14.
Phys Chem Chem Phys ; 13(8): 3281-90, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21264394

ABSTRACT

With a variety of surface probe techniques, we investigated low-temperature decomposition of methanol on Au nanoclusters formed by vapor deposition onto an ordered Al(2)O(3)/NiAl(100) thin film. Upon adsorption of methanol on the Au clusters (with mean diameter 1.5-3.8 nm and height 0.45-0.85 nm) at 110 K, some of the adsorbed methanol dehydrogenates directly into carbon monoxide (CO); the produced hydrogen atoms (H) begin to desorb near 125 K whereas most of the CO desorbs above 240 K. The reaction exhibits a significant dependence on the Au coverage: the produced CO increases in quantity with the Au coverage, reaches a maximum at about 1.0-1.5 ML Au, whereas decreases with further increase of the Au coverage. The coverage-dependence is rationalized partly by an altered number of reactive sites associated with low-coordinated Au in the clusters. At least two kinds of reactive sites for the low-temperature decomposition are distinguished through distinct C-O stretching frequencies (2050 cm(-1) and 2092 cm(-1)) while the produced CO co-adsorbs with H and methanol.

15.
Phys Chem Chem Phys ; 13(4): 1531-41, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21116540

ABSTRACT

Au-Pt bimetallic nanoclusters on a thin film of Al(2)O(3)/NiAl(100) undergo significant structural evolution on variation of the temperature. Au and Pt deposited sequentially from the vapor onto thin-film Al(2)O(3)/NiAl(100) at 300 K form preferentially bimetallic nanoclusters (diameter ≦ 6.0 nm and height ≦ 0.8 nm) with both Au and Pt coexisting at the cluster surface, despite the order of metal deposition. These bimetallic clusters are structurally ordered, have a fcc phase and grow with their facets either (111) or (001) parallel to the θ-Al(2)O(3)(100) surface. Upon annealing the clusters to 400-500 K, the Au atoms inside the clusters migrate toward the surface, resulting in formation of a structure with a Pt core and an Au shell. Annealing the sample to 500-650 K reorients the bimetallic clusters--all clusters have their (001) facets parallel to the oxide surface--and induces oxidation of Pt. Such annealed bimetallic clusters become encapsulated with the aluminium-oxide materials and a few Au remain on the surface.

16.
Langmuir ; 20(9): 3641-7, 2004 Apr 27.
Article in English | MEDLINE | ID: mdl-15875394

ABSTRACT

The structure of self-assembled monolayers ofp-terphenyl-4-carboxylic acid and the mixed monolayers of this acid with n-hexadecanoic acid on silver surface were studied by reflection-IR spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) measurement, X-ray photoemission electron microscopy (X-PEEM), and atomic force microscopy. Exposure of the p-terphenyl-4-carboxylate monolayer to H2S vapor resulted in reorganization of the film structure into clusters of the corresponding free acids, in tens of nanometer dimension. Exposure of the mixed monolayer to H2S resulted in reorganization of the mixed monolayer film into phase-separated clusters of respective component molecules. The saturated aliphatic acid formed clusters of submicrometer size, whereas the p-terphenyl-4-carboxylic acid formed clusters of tens of nanometer size, presumably due to different surface mobility and/or intermolecular interaction of the two types of molecule. Restoration of the monolayer film from the clusters, driven by the reaction between the free acid molecules and the basic surface sites, proceeded at different speeds for the two types of molecules. The saturated acid monolayer was restored much faster than the p-terphenyl-4-carboxylic acid monolayer. A domain-separated monolayer in several micrometers scale was obtained. The process was imaged by tapping mode atomic force microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...