Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Respir Res ; 25(1): 139, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521900

ABSTRACT

BACKGROUND: DEHP, a common plasticizer known for its hormone-disrupting properties, has been associated with asthma. However, a significant proportion of adult asthma cases are "non-atopic", lacking a clear etiology. METHODS: In a case-control study conducted between 2011 and 2015, 365 individuals with current asthma and 235 healthy controls from Kaohsiung City were enrolled. The control group comprised individuals without asthma, Type 2 Diabetes Mellitus (T2DM), hypertension, or other respiratory/allergic conditions. The study leveraged asthma clusters (Clusters A to F) established in a prior investigation. Analysis involved the examination of urinary DEHP metabolites (MEHP and MEHHP), along with the assessment of oxidative stress, sphingolipid metabolites, and inflammatory biomarkers. Statistical analyses encompassed Spearman's rank correlation coefficients, multiple logistic regression, and multinomial logistic regression. RESULTS: Asthma clusters (E, D, C, F, A) exhibited significantly higher ORs of MEHHP exposures compared to the control group. When considering asthma-related comorbidities (T2DM, hypertension, or both), patients without comorbidities demonstrated significantly higher ORs of the sum of primary and secondary metabolites (MEHP + MEHHP) and MEHHP compared to those with asthma comorbidities. A consistent positive correlation between urinary HEL and DEHP metabolites was observed, but a consistent negative correlation between DEHP metabolites and selected cytokines was identified. CONCLUSION: The current study reveals a heightened risk of MEHHP and MEHP + MEHHP exposure in specific asthma subgroups, emphasizing its complex relationship with asthma. The observed negative correlation with cytokines suggests a new avenue for research, warranting robust evidence from epidemiological and animal studies.


Subject(s)
Asthma , Diabetes Mellitus, Type 2 , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Hypertension , Phthalic Acids , Adult , Animals , Humans , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/urine , Environmental Exposure , Case-Control Studies , Asthma/chemically induced , Asthma/diagnosis , Asthma/epidemiology , Cytokines
2.
Int J Hyg Environ Health ; 258: 114348, 2024 May.
Article in English | MEDLINE | ID: mdl-38479164

ABSTRACT

OBJECTIVE: Exposure to ambient PM2.5 and its bound metals poses a risk to health and disease, via, in part, oxidative stress response. A variety of oxidative stress markers have been used as markers of response, but their relevance to environmental exposure remains to be established. We evaluated, longitudinally, a battery of oxidative stress markers and their relationship with the exposure of PM2.5 and its bound metals in a panel of healthy participants. MATERIAL AND METHODS: Levels of residence- and personal-based ambient air PM2.5 and its bound metals, as well as of lung function parameters, were assessed in a total of 58 questionnaire-administered healthy never smoker participants (male, 39.7%). Levels of urinary oxidative stress markers, including Nε-(hexanoyl)-lysine (HEL; an early lipid peroxidation product), 4-hydroxynonenal (4-HNE), N7-methylguanine (N7-meG), and 8-hydroxy-2-deoxyguanosine (8-OHdG), plasma antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GPx), and urinary metals were measured by ELISA, LC-MS, and ICP-MS, respectively. The results of three repeated measurements at two-month intervals were analyzed using the Generalized Estimating Equation (GEE). RESULTS: After adjusting for confounders, residence- and personal-based PM2.5 levels were positively associated with HEL (ß = 0.22 and 0.18) and N7-meG (ß = 0.39 and 0.13). Significant correlations were observed between personal air PM2.5-Pb and urinary Pb with HEL (ß = 0.08 and 0.26). While FVC, FEV1, FEV1/FVC, MMF, and PEFR predicted% were normal, a negative interaction (pollutant*time, P < 0.05) was noted for PM2.5-V, Mn, Co, Ni, Zn, As, and Pb. Additionally, a negative interaction was found for N7-meG (ß = -21.35, -18.77, -23.86) and SOD (ß = -26.56, -26.18, -16.48) with FEV1, FVC, and PEFR predicted%, respectively. CONCLUSION: These findings emphasize potential links between environmental exposure, internal dose, and health effects, thereby offering valuable markers for future research on metal exposure, oxidative stress, and health outcomes.


Subject(s)
Air Pollutants , Humans , Male , Air Pollutants/analysis , Particulate Matter/analysis , Healthy Volunteers , Lead/analysis , Environmental Exposure/analysis , Oxidative Stress , Superoxide Dismutase
4.
Thorax ; 78(3): 225-232, 2023 03.
Article in English | MEDLINE | ID: mdl-35710744

ABSTRACT

BACKGROUND: Adult asthma is phenotypically heterogeneous with unclear aetiology. We aimed to evaluate the potential contribution of environmental exposure and its ensuing response to asthma and its heterogeneity. METHODS: Environmental risk was evaluated by assessing the records of National Health Insurance Research Database (NHIRD) and residence-based air pollution (particulate matter with diameter less than 2.5 micrometers (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs)), integrating biomonitoring analysis of environmental pollutants, inflammatory markers and sphingolipid metabolites in case-control populations with mass spectrometry and ELISA. Phenotypic clustering was evaluated by t-distributed stochastic neighbor embedding (t-SNE) integrating 18 clinical and demographic variables. FINDINGS: In the NHIRD dataset, modest increase in the relative risk with time-lag effect for emergency (N=209 837) and outpatient visits (N=638 538) was observed with increasing levels of PM2.5 and PAHs. Biomonitoring analysis revealed a panel of metals and organic pollutants, particularly metal Ni and PAH, posing a significant risk for current asthma (ORs=1.28-3.48) and its severity, correlating with the level of oxidative stress markers, notably Nε-(hexanoyl)-lysine (r=0.108-0.311, p<0.05), but not with the accumulated levels of PM2.5 exposure. Further, levels of circulating sphingosine-1-phosphate and ceramide-1-phosphate were found to discriminate asthma (p<0.001 and p<0.05, respectively), correlating with the levels of PAH (r=0.196, p<0.01) and metal exposure (r=0.202-0.323, p<0.05), respectively, and both correlating with circulating inflammatory markers (r=0.186-0.427, p<0.01). Analysis of six phenotypic clusters and those cases with comorbid type 2 diabetes mellitus (T2DM) revealed cluster-selective environmental risks and biosignatures. INTERPRETATION: These results suggest the potential contribution of environmental factors from multiple sources, their ensuing oxidative stress and sphingolipid remodeling to adult asthma and its phenotypic heterogeneity.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Diabetes Mellitus, Type 2 , Polycyclic Aromatic Hydrocarbons , Adult , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Sphingolipids , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods
6.
Int J Hyg Environ Health ; 233: 113708, 2021 04.
Article in English | MEDLINE | ID: mdl-33588194

ABSTRACT

Indium tin oxide exposure poses a potential health risk, but the exposure assessment in occupational setting remains incomplete and continues to be a significant challenge. To this end, we investigated the association of work type, airborne indium concentration, respirable fraction of total indium, and cumulative indium exposure index (CEI) with the levels of plasma indium (P-In) and urinary indium (U-In) among 302 indium tin oxide target manufacturing and recycling workers in Taiwan. We observed that recycling-crushing produced the highest concentrations of total indium (area: 2084.8 µg/m3; personal: 3494.5 µg/m3) and respirable indium (area: 533.4 µg/m3; personal: 742.0 µg/m3). Powdering produced the highest respirable fraction of total indium (area: 58.6%; personal: 81.5%), where the workers had the highest levels of P-In (geometric mean: 2.0 µg/L) and U-In (1.0 µg/g creatinine). After adjusting for the confounder, the CEIs of powdering (ßPR = 0.78; ßPR = 0.44), bonding (ßPT = 0.61; ßPT = 0.37), and processing workers (ßPT = 0.43; ßPT = 0.28) showed significant associations with P-In and U-In, validating its utility in monitoring the exposure. Also, the respirable fraction of total indium significantly contributed to the increased levels of P-In and U-In among workers. The varying levels of relationship noted between indium exposure and the levels of P-In and U-In among workers with different work types suggested that setting the exposure limits among different work types is warranted.


Subject(s)
Occupational Exposure , Humans , Indium/analysis , Occupational Exposure/analysis , Taiwan , Tin Compounds/analysis
7.
Article in English | MEDLINE | ID: mdl-31795521

ABSTRACT

Oxidative stress plays a crucial role in the development of diseases induced by welding fumes. To our knowledge, little information is available on the relationship between multiple heavy metal exposure and oxidative stress in welders. We assessed the relationship between multiple heavy metal exposure and oxidative damage by analyzing 174 nonsmoking male welders in a shipyard. Urinary metals were used as the internal dose of exposure to metals in welding fumes, and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used as an oxidative DNA damage marker. The relationship between workers' metal levels and 8-OHdG was estimated using a multiple linear regression model. The geometric mean levels of urinary chromium (Cr), nickel (Ni), cadmium (Cd), and lead (Pb) were considerably higher in welders than in controls. Urinary Cr and Ni were determined as effective predictors of urinary 8-OHdG levels after adjusting for covariates. Oxidative DNA damage was associated with both Cr and Ni of welding fume exposure in shipyard welders (Ln Cr: ß = 0.33, 95%C.I. = 0.16-0.49; Ln Ni: ß = 0.27, 95%C.I. = 0.12-0.43). In this study, we investigated the significantly positive relationship between urinary metals (especially Cr and Ni) and 8-OHdG in nonsmoking shipyard welders. Moreover, the use of particulate respirators did not reduce metal exposure and oxidative damage. Therefore, we infer that hazard identification for welders should be conducted.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , Air Pollutants, Occupational/toxicity , Metals, Heavy/toxicity , Occupational Exposure/analysis , Welding , Air Pollutants, Occupational/analysis , Biomarkers/urine , DNA Damage , Humans , Linear Models , Male , Metals, Heavy/analysis , Middle Aged , Oxidative Stress
8.
Environ Pollut ; 232: 523-532, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28988870

ABSTRACT

Sleep disorders may pose a risk to workers in the workplace. We aimed to investigate the associations between metal fume fine particulate matter (PM2.5) and sleep quality in workers. We assessed the effects of personal exposure to metal fume PM2.5 on lung functions, urinary biomarkers, and sleep quality in shipyard welding workers. In total, 96 welding workers and 54 office workers were recruited in the present study; office workers were exposed to 82.1 ± 94.1 µg/m3 PM2.5 and welding workers were exposed to 2166.5 ± 3149.1 µg/m3. Welding workers had significantly lower levels of FEV25-75 than office workers (p < 0.05). An increase in 1 µg/m3 PM2.5 was associated with a decrease of 0.003 ng/mL in urinary serotonin (95% CI = -0.007-0.000, p < 0.05) in all workers and with a decrease of 0.001 ng/mL in serotonin (95% CI = -0.004-0.002, p < 0.05) in welding workers, but these were not observed in office workers. There was no significant association of PM2.5 with urinary cortisol observed in any workers. Urinary serotonin was associated with urinary Cu, Mn, Co, Ni, Cd, and Pb. Urinary cortisol was associated with Cu, Mn, Co, Ni, Cd, and Pb. Sixteen subjects were randomly selected from each of the office and welding workers for personal monitoring of sleep quality using a wearable device. We observed that welding workers had greater awake times than did office workers (p < 0.05). Our study observed that exposure to heavy metals in metal fume PM2.5 may disrupt sleep quality in welding workers.


Subject(s)
Air Pollutants, Occupational/analysis , Metals, Heavy/analysis , Occupational Exposure/statistics & numerical data , Particulate Matter/analysis , Welding/statistics & numerical data , Adult , Biomarkers/metabolism , Gases , Humans , Lung/chemistry , Male , Occupational Exposure/analysis
9.
Physiol Plant ; 150(4): 550-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24102363

ABSTRACT

Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2) s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2) s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions.


Subject(s)
Chlamydomonas reinhardtii/genetics , Light , Methionine Sulfoxide Reductases/genetics , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Transcriptome/radiation effects , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/metabolism , Dose-Response Relationship, Radiation , Gene Expression Regulation, Enzymologic/radiation effects , Gene Expression Regulation, Plant/radiation effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Isoenzymes/genetics , Oxidants/metabolism , Oxidants/pharmacology , Superoxides/metabolism
10.
Plant Cell Physiol ; 54(8): 1296-315, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23713096

ABSTRACT

Nitric oxide (NO) was produced in Chlamydomonas reinhardtii cells 30 min after illumination at a very high light intensity of 3,000 µmol m⁻² s⁻¹ (VHL) followed by singlet oxygen (¹O2) production, lipid peroxidation, expression of oxidative stress-related genes, irreversible PSII inactivation and cell death. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger, effectively reduced ¹O2 levels and VHL damage, while treatment with diphenylamine (DPA), an ¹O2 scavenger, only slightly reduced NO levels, though VHL damage was still effectively reduced. In the presence of cPTIO, the decline in minimum (Fo, Ft) and maximum (Fm, Fm') fluorescence after 60 min of VHL illumination can be slowed, and after recovery to 50 µmol m⁻² s⁻¹ conditions, PSII activity (Fv/Fm, Fv'/Fm') and PSII donor-side and acceptor-side electron transfer were partially restored. This finding indicates that ¹O2 production is induced by NO through inhibition of PSII electron transfer under VHL conditions. VHL illumination caused a decrease in carotenoid contents but a transient increase in the transcription of two enzymes involved in carotenoid synthesis, phytoene synthase (PSY) and phytoene desaturase (PDS), at 30 min followed by a decrease at 60 min. The VHL-induced decrease in PDS transcription can be inhibited in the presence of cPTIO. The results of the present study show that NO generated in C. reinhardtii cells under VHL conditions induces ¹O2 accumulation due to a decrease in the ¹O2-scavenging capacity caused by NO-mediated inhibition of carotenoid synthesis and PSII electron transport, which, in turn, leads to oxidative damage and cell death.


Subject(s)
Carotenoids/metabolism , Chlamydomonas reinhardtii/physiology , Gene Expression Regulation, Plant/radiation effects , Nitric Oxide/metabolism , Photosystem II Protein Complex/metabolism , Singlet Oxygen/metabolism , Algal Proteins/genetics , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Down-Regulation , Light , Lipid Peroxidation , Oxidative Stress
11.
J Phycol ; 49(6): 1181-91, 2013 Dec.
Article in English | MEDLINE | ID: mdl-27007636

ABSTRACT

Full-length protein disulfide isomerase (UfPDI) cDNA was cloned from the intertidal macroalga Ulva lactuca Linnaeus. Modulation of UfPDI expression by stresses and polyamines (PA) was studied. UfPDI transcription and enzyme activity were increased by hypersalinity (90) or high light illumination (1,200 µmol photons · m(-2)  · s(-1) ), decreased by the addition of 100 µM CuSO4 . An exposure to a salinity of 90 decreased PA contents. Treating with PA biosynthetic inhibitors, D-arginine (D-Arg) or α-methyl ornithine (α-MO), led to a further decrease and also inhibited UfPDI expression and recovery of the growth rate. These results suggest that PAs are required to activate UfPDI expression with hypersalinity, even PA contents are decreased at a salinity of 90. The induction of UfPDI expression by hypersalinity of 90 and tolerance to hypersalinity could be enhanced if internal PA contents rise. Sung et al. (2011b) showed that PA contents could be increased by pretreating with putrescine (Put, 1 mM), spermidine (Spd, 1 mM), or spermine (Spm, 1 mM) at a salinity of 30. Therefore, PA pretreatment effect on UfPDI expression was examined. Pretreatment with Spd and Spm, but not with Put, enhanced UfPDI expression after transferred to a salinity of 90 and restored the growth rate. In conclusion, induction of UfPDI expression by Spd or Spm before exposure to hypersaline conditions and continuous up-regulation after hypersalinity exposure are required for the acquisition of hypersalinity tolerance in the intertidal green macroalga U. lactuca.

12.
Plant Cell Physiol ; 53(2): 445-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22210901

ABSTRACT

Nitric oxide (NO) has emerged as a fundamental signal molecule involved in the responses of plant to stress. A role for NO in the regulation of methionine sulfoxide reductase (MSR) mRNA expression and high light acclimation was studied in a green macroalga Ulva fasciata Delile. Transfer from darkness to high light (≥1,200 µmol photons m(-2) s(-1)) inhibited photosynthesis and growth but increased NO production and UfMSRA and UfMSRB transcripts. Treatment with an NO scavenger, 2-(4-carboxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), at 1,200 µmol photons m(-2) s(-1) caused a further growth inhibition accompanied by an inhibition of the increase of UfMSRA and UfMSRB transcripts by high light, while treatment with an NO generator, sodium nitroprusside (SNP), alleviated the growth inhibition and enhanced UfMSRA and UfMSRB expression. Exposure to moderate light (300 µmol photons m(-2) s(-1)) conditions also increased UfMSRA and UfMSRB transcripts, which were not affected by cPTIO treatment but were enhanced by SNP treatment. So, NO does not mediate the up-regulation of UfMSR genes by transfer to moderate light possibly as a precautionary mechanism in the sense of increasing light intensities in the daytime. In conclusion, NO production can be induced in U. fasciata upon exposure to high light for up-regulation of UfMSRA and UfMSRB expression but the level of NO production is not sufficient for acquisition of full tolerance to high light stress. Enhanced NO production by an exogenously applied NO generator can effectively trigger the high light acclimation process, including UfMSRA and UfMSRB expression.


Subject(s)
Acclimatization , Light , Methionine Sulfoxide Reductases/metabolism , Nitric Oxide/metabolism , Ulva/genetics , Ulva/radiation effects , Cyclic N-Oxides/pharmacology , Gene Expression Regulation, Plant , Imidazoles/pharmacology , Methionine Sulfoxide Reductases/genetics , Nitroprusside/pharmacology , Photosynthesis/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ulva/enzymology , Up-Regulation
13.
Physiol Plant ; 144(3): 225-37, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22122736

ABSTRACT

A gene (UfCBR) encoding carotene biosynthesis-related (CBR) protein that potentially functions for the dissipation of excessive energy has been cloned from the intertidal green macroalga Ulva fasciata Delile. Hypersalinity and high light ≥300 µmol m(-2) s(-1) increased both UfCBR mRNA level and non-photochemical quenching (NPQ). The increase of UfCBR mRNA level and NPQ by high light was inhibited by treatment of photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, but not by stigmatellin, an inhibitor that blocks electron transfer from quinol oxidase to iron-sulfur protein in cytochrome b(6) f complex. Treatment of dimethylthiourea, an H(2) O(2) scavenger, under 1200 µmol m(-2) s(-1) condition inhibited H(2) O(2) accumulation but did not affect UfCBR mRNA level, while treatment of H(2) O(2) in 150 µmol m(-2) s(-1) condition decreased UfCBR mRNA level. Thus, an reactive oxygen species-independent redox control via a more reduced state downstream the cytochrome b(6) f complex is involved in high light up-regulation of UfCBR expression in U. fasciata. The expression of UfCBR in U. fasciata against oxidative stress occurring in high light or high salinity in relation to NPQ is discussed.


Subject(s)
Carotenoids/biosynthesis , Light , Salinity , Ulva/metabolism , Acclimatization , Carotenoids/genetics , Cytochrome b6f Complex/genetics , Cytochrome b6f Complex/metabolism , Dibromothymoquinone/pharmacology , Diuron/pharmacology , Electron Transport , Gene Expression Regulation, Plant , Genes, Plant , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Oxygen/metabolism , Photochemical Processes , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polyenes/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Ulva/genetics , Ulva/radiation effects
14.
Mar Biotechnol (NY) ; 13(4): 684-94, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20957402

ABSTRACT

The molecular acclimation of intertidal green macroalga Ulva fasciata Delile to high salinity stress were examined by the construction of a forward cDNA library via the suppressive subtractive hybridization between 30‰ and 90‰ (24 h) and by the time course dynamics of several abundantly expressed genes. Among the genes with known sequences, the expressed sequence tags are abundant in the function of protein synthesis (ribosomal protein) and destination. The cDNAs of ATP-dependent Clp protease (UfClpC), 20S proteasome ß-subunit type 1 domain (UfPbf1), ubiquitin-conjugating enzyme E2 I (UfUbc9), and heat shock protein 90A (UfHsp90A) were cloned. UfClpC transcript increased 3 h after 90‰ treatment, followed by a decrease, while UfPbf1 and UfUbc9 transcripts increased after 12 h and decreased at 48 h. The transcripts of UfHsp90A increased 1 h after 90‰ treatment, followed by a drop and to the control level at 48 h. Protease activity increased 3 h after 90‰ treatment and decreased to the control level at 48 h. H2O2 contents increased 1 h after 90‰ treatment and then remained unchanged, but protein carbonyl group contents increased after 48 h. The treatments of reactive oxygen species scavengers partially alleviated 90‰ damage (partial growth rescue) and suppressed the increases in H2O2 content, protein carbonyl group content, protease activity, and UfClpC, UfPbf1, UfUbc9, and UfHsp90A transcripts by 90‰. The induction of specific chaperones and proteases at the molecular level for protein quality control can be considered as one of the molecular mechanisms of hypersalinity acclimation in U. fasciata.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , HSP90 Heat-Shock Proteins/metabolism , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , Salinity , Ulva/metabolism , Analysis of Variance , Cloning, Molecular , Gene Expression Regulation, Enzymologic/genetics , Gene Library , HSP90 Heat-Shock Proteins/genetics , Nucleic Acid Hybridization , Oxidation-Reduction , Peptide Hydrolases/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
15.
Aquat Toxicol ; 94(4): 275-85, 2009 Oct 04.
Article in English | MEDLINE | ID: mdl-19665240

ABSTRACT

The expression of genes involved in the control of redox homeostasis and antioxidant defense was studied in macroalga Ulva fasciata Delile in response to 5 and 50 microM CuSO(4). Redox-related genes, methionine sulfoxide reductase A (UfMsrA), thioredoxin (UfTrx), cyclophilin (UfCyp), and ferritin (UfFer) that were up-regulated by excess Cu [Wu, T.M., Lee, T.M., 2008. Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47, 346-360] were cloned and their expression was compared to superoxide dismutase (UfMnsod and UfFesod), ascorbate peroxidase (UfApx), glutathione reductase (UfGr), and catalase (UfCat). Transcripts of UfMsrA, UfCyp, and UfFer were increased by excess Cu with a peak at 3h and that of UfTrx increased after 6-9h, but not affected by 4-day exposure to excess Cu, except an increase in UfMsrA transcript. Transcripts of UfMnsod, UfFesod, UfApx, UfGr and UfCat can be increased by 4-day exposure to Cu excess [Wu, T.M., Lee, T.M., 2008. Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47, 346-360] but not by short-term excess Cu treatment, except UfGr whose transcript increased after 3h. Reactive oxygen species involved in up-regulation of antioxidant defense enzymes genes. These results suggest that the expression of genes of antioxidant defense enzymes and UfMsrA are associated with long-term adaptation of U. fasciata to Cu excess and transcription of redox-related genes and UfGr is up-regulated for short-term acclimation.


Subject(s)
Antioxidants/metabolism , Copper/toxicity , Gene Expression/drug effects , Homeostasis/drug effects , Homeostasis/genetics , Ulva/drug effects , Ulva/genetics , Water Pollutants, Chemical/toxicity , Copper Sulfate/metabolism , Copper Sulfate/toxicity , Gene Expression/physiology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Time Factors , Ulva/enzymology , Ulva/metabolism , Up-Regulation/drug effects
16.
Mar Biotechnol (NY) ; 11(2): 199-209, 2009.
Article in English | MEDLINE | ID: mdl-18758860

ABSTRACT

The modulation of manganese superoxide dismutase (MnSOD), FeSOD, ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) gene expression and activities and antioxidants in Ulva fasciata against hypersalinity (90 per thousand)-induced oxidative stress was studied. Increases in H(2)O(2) contents but no changes in lipid peroxidation and protein carbonyl group contents suggest oxidative damage did not occur in 90 per thousand condition. Antioxidants were consumed for reactive oxygen species (ROS) scavenging indicated by decreased ascorbate and glutathione contents by 90 per thousand. Antioxidant enzymes were differently expressed by 90 per thousand for ROS removal. MnSOD activity and transcript increased 1 h after 90 per thousand treatment with a peak at hour 3, while FeSOD activity increased fast to the plateau after 1 h and its transcript increased after 3 h. APX activity increased 1 h after 90 per thousand but its transcript rose till 3 h, and GR activity increased after 1 h with a peak at hour 3 but its transcript increased till 3 h. CAT activity and transcript increased after 12 h. Enzyme activity is transcriptionally regulated by 90 per thousand except a fast increase in FeSOD, APX, and GR activities during 1 h. APX is responsible for early H(2)O(2) decomposition while CAT scavenges H(2)O(2) in the later period. The inhibition of 90 per thousand induced increase of H(2)O(2) content and FeSOD activity and transcript by treatment of a H(2)O(2) scavenger, dimethylthiourea, and the increase of FeSOD transcript of 30 per thousand grown thalli by H(2)O(2) treatment suggest that H(2)O(2) mediates the upregulation of FeSOD by hypersalinity while other enzymes is modulated by factors other than H(2)O(2).


Subject(s)
Antioxidants/metabolism , Enzymes/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Salinity , Sodium Chloride/pharmacology , Ulva/drug effects , Ulva/enzymology , Up-Regulation/drug effects , Gene Expression Regulation, Enzymologic , Hydrogen Peroxide/analysis , Protein Carbonylation , Thiobarbituric Acid Reactive Substances , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...