Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.129
Filter
1.
J Asian Nat Prod Res ; : 1-10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753580

ABSTRACT

Nine jatrophane diterpenoids were isolated from the whole plant Euphorbia helioscopia, including two new ones, helioscopnins A (1) and B (2). Comprehensive spectroscopic data analysis and ECD calculations elucidated their structures, including absolute configurations. All compounds were evaluated for bioactivity towards autophagic flux by flow cytometry using HM mCherry-GFP-LC3 cells. Compounds 1, 3, 4, 5, 8, and 9 significantly increased autophagic flux.

2.
Heliyon ; 10(7): e28467, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560270

ABSTRACT

Endocannabinoids (eCBs) exert considerable influence over energy metabolism, lipid metabolism, and glucose metabolism within the human body. Among the most biologically active cannabinoids identified thus far are 2-arachidonoylglycerol (2-AG), arachidonoyl ethanolamide (AEA), 1-stearoylglycerol (1-SRG), and stearoyl ethanolamide (SEA), which are derived from arachidonic acid (AA) and stearic acid (SA). However, despite the unique in bioactivities exhibited by eCBs, their determination in plasma has been hindered by the lack of sensitive analytical methods. The aim of this study was to develop and validate a highly sensitive and rapid method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for accurate measurement of AEA, SEA, 2-AG, 1-SRG, AA, and SA levels in human plasma samples. Sample preparation involved a protein precipitation method and a methyl tert-butyl ether liquid-liquid extraction method. Chromatographic separation was accomplished by utilizing an ACQUITY UPLC BEH C8 column with a mobile phase of acetonitrile containing 0.1% formic acid and water containing 0.1% formic acid, flowing at a rate of 0.35 mL/min. AA-d8, 2-AG-d5, and AEA-d8 were selected as deuterated internal standards. The analytes were determined with MRM in both positive and negative ion mode. The lower limit of quantification ranged from 0.1 to 400 ng/mL, and the correlation coefficient (R2) was >0.99. Inter-day and intra-day precision exhibited values of 0.55-13.29% and 0.62%-13.90%, respectively. Recovery and matrix effect were within the range of 77.7%-109.7%, and 90.0%-113.5%, respectively. Stability tests confirmed the acceptability of all analytes. To demonstrate the effectiveness of the approach, it was implemented to assess and compare plasma samples from healthy volunteers (n = 49) and individuals with non-alcoholic fatty liver disease (NAFLD) (n = 62). The study revealed significant differences in AEA, SEA, AA, and SA levels between the two groups.

3.
Environ Health ; 23(1): 38, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38609943

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are known environmental contaminants with immunosuppressive properties. Their connection to rheumatoid arthritis (RA), a condition influenced by the immune system, is not well studied. This research explores the association between PFAS exposure and RA prevalence. METHODS: This research utilized data from the NHANES, encompassing a sample of 10,496 adults from the 2003-2018 cycles, focusing on serum levels of several PFAS. The presence of RA was determined based on self-reports. This study used multivariable logistic regression to assess the relationship between individual PFAS and RA risk, adjusting for covariates to calculate odds ratios (ORs). The combined effects of PFAS mixtures were evaluated using BKMR, WQS regression, and quantile g-computation. Additionally, sex-specific associations were explored through stratified analysis. RESULTS: Higher serum PFOA (OR = 0.88, 95% CI: 0.79, 0.98), PFHxS (OR = 0.91, 95% CI: 0.83, 1.00), PFNA (OR = 0.87, 95% CI: 0.77, 0.98), and PFDA (OR = 0.89, 95% CI: 0.81, 0.99) concentration was related to lower odds of RA. Sex-specific analysis in single chemical models indicated the significant inverse associations were only evident in females. BKMR did not show an obvious pattern of RA estimates across PFAS mixture. The outcomes of sex-stratified quantile g-computation demonstrated that an increase in PFAS mixture was associated with a decreased odds of RA in females (OR: 0.76, 95% CI: 0.62, 0.92). We identified a significant interaction term of the WQS*sex in the 100 repeated hold out WQS analysis. Notably, a higher concentration of the PFAS mixture was significantly associated with reduced odds of RA in females (mean OR = 0.93, 95% CI: 0.88, 0.98). CONCLUSIONS: This study indicates potential sex-specific associations of exposure to various individual PFAS and their mixtures with RA. Notably, the observed inverse relationships were statistically significant in females but not in males. These findings contribute to the growing body of evidence indicating that PFAS may have immunosuppressive effects.


Subject(s)
Arthritis, Rheumatoid , Fluorocarbons , Adult , Female , Male , Humans , Nutrition Surveys , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/epidemiology , Odds Ratio , Self Report
4.
Front Psychol ; 15: 1377430, 2024.
Article in English | MEDLINE | ID: mdl-38659689

ABSTRACT

Introduction: Physical exercise is considered a useful non-pharmacological adjunctive treatment for promoting recovery from substance use disorders (SUD). However, adherence to physical exercise treatments is low, and little is known about what factors are associated with the initiation and maintenance of physical exercise behaviors. The aim of this study was to explore the psychosocial factors underlying these behaviors in individuals with SUD using an integrated theoretical model based on the health action process approach (HAPA) and the theory of planned behavior (TPB). Methods: A total of 1,197 individuals with SUDs (aged 37.20 ± 8.62 years) were recruited from 10 compulsory isolation drug rehabilitation centers in Zhejiang Province via convenience sampling according to a set of inclusion criteria. Self-reported data were collected to assess task self-efficacy (TSE), maintenance self-efficacy (MSE), recovery self-efficacy (RSE), outcome expectations (OE), action planning (AP), coping planning (CP), social support (SS), subjective norms (SN), attitude behavior (AB), behavioral intention (BI), perceived behavioral control (PBC), risk perception (RP), exercise stage, and exercise behavior in this integrated model. ANOVA and structural equation modeling (SEM) were used to evaluate this model. Results: One-way ANOVA revealed that the majority of the moderating variables were significantly different in the exercise phase. Further SEM showed that the model fit the data and revealed several important relationships. TSE, RP, SS, AB, and SN were indirectly associated with physical exercise behavior in individuals with SUD through the BI in the SUD initiation stage. In addition, PBC was directly related to physical exercise behavior in individuals with SUD. In the maintenance stage, MSE, AP, CP and exercise behavior were significantly related. Moreover, AP and CP were mediators of BI and MSE. Conclusion: This study is the first attempt to integrate patterns of physical exercise behavior in individuals with SUD. The HAPA-TPB integration model provides a useful framework for identifying determinants of physical exercise behavioral intentions and behaviors in individuals with SUD and for explaining and predicting the initiation and maintenance of physical exercise behaviors in these individuals. Moreover, the model provides scientific guidance for the enhancement of physical exercise adherence in individuals with SUD.

5.
Nat Commun ; 15(1): 3486, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664428

ABSTRACT

Van der Waals (vdW) assembly of low-dimensional materials has proven the capability of creating structures with on-demand properties. It is predicted that the vdW encapsulation can induce a local high-pressure of a few GPa, which will strongly modify the structure and property of trapped materials. Here, we report on the structural collapse of carbon nanotubes (CNTs) induced by the vdW encapsulation. By simply covering CNTs with a hexagonal boron nitride flake, most of the CNTs (≈77%) convert from a tubular structure to a collapsed flat structure. Regardless of their original diameters, all the collapsed CNTs exhibit a uniform height of ≈0.7 nm, which is roughly the thickness of bilayer graphene. Such structural collapse is further confirmed by Raman spectroscopy, which shows a prominent broadening and blue shift in the Raman G-peak. The vdW encapsulation-induced collapse of CNTs is fully captured by molecular dynamics simulations of the local vdW pressure. Further near-field optical characterization reveals a metal-semiconductor transition in accompany with the CNT structural collapse. Our study provides not only a convenient approach to generate local high-pressure for fundamental research, but also a collapsed-CNT semiconductor for nanoelectronic applications.

6.
World J Clin Cases ; 12(12): 2086-2091, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38680270

ABSTRACT

BACKGROUND: Venous variations are uncommon and usually hard to identify, and basilic vein variation is particularly rare. Basilic vein variation usually presents without any clinical symptoms and is often regarded as a benign alteration. This case was a patient with congenital basilic vein variation encountered during surgery for an infusion port. CASE SUMMARY: We documented and analyzed an uncommon anatomical variation in the basilic vein encountered during arm port insertion. This peculiarity has hitherto remained undescribed in the literature. We offer remedial strategies for addressing this anomaly in the future and precautionary measures to circumvent its occurrence. We conducted a comprehensive review of analogous cases in the literature, offering pertinent therapeutic recommendations and solutions, with the aim of enhancing the efficacy and safety of future arm port implantations. CONCLUSION: Venous variation is rare and requires detailed intraoperative and postoperative examination to ensure accuracy, so as not to affect subsequent treatment.

7.
Int Immunopharmacol ; 132: 111968, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579565

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease whose pathogenesis and mechanisms have not been fully described. The m6A methylation modification is a general mRNA modification in mammalian cells and is closely associated with the onset and progression of inflammatory bowel disease (IBD). Palmatine (PAL) is a biologically active alkaloid with anti-inflammatory and protective effects in animal models of colitis. Accordingly, we examined the role of PAL on colitis by regulating N6-methyladenosine (m6A) methylation. METHODS: A rat experimental colitis model was established by 5 % dextran sulfate sodium (DSS) in drinking water for seven days, then PAL treatment was administered for seven days. The colonic tissue pathology was assessed using hematoxylin-eosin (HE) and disease activity index (DAI). In in vitro studies, a human, spontaneously immortalized non-cancerous colon mucosal epithelial cell line (NCM460) was exposed to 2 % DSS and treated with PAL and cell viability was assayed using Cell Counting Kit-8 (CCK-8). The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA) kits. The level of Zonula occludens-1 (ZO-1) was dectected by immunofluorescence. Transepithelial electrical resistance (TEER) of cells was also assessed. The methyltransferase-like 3 (METTL3), METTL14, AlkB homologate 5 (ALKBH5), and fat mass and obesity-associated protein (FTO) expression levels were assessed by western blotting. The localized expression of m6A was measured by immunofluorescence. RESULTS: PAL significantly prevented bodyweight loss and shortening of the colon in experimental colitis rats, as well as decreasing the DAI and histological damage scores. Furthermore, PAL inhibited the levels of inflammatory factors (TNF-α, IL-6, IL-8, and IL-1ß) in both DSS treated rats and NCM460 cells. In addition, PAL enhanced the expression level of ZO-1, and increased the transepithelial electrical resistance to repaire intestinal barrier dysfunction. Colitis occurred due to decreased m6A levels, and the increased FTO expression led to a colitis phenotype. PAL markedly enhanced the METTL3 and METTL14 expression levels while decreasing ALKBH5 and FTO expression levels. CONCLUSIONS: The findings demonstrated that PAL improved DSS-induced experimental colitis. This effect was associated with inhibiting FTO expression and regulating m6A methylation.


Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Berberine Alkaloids , Cytokines , Dextran Sulfate , Disease Models, Animal , Rats, Sprague-Dawley , Animals , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Male , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Cytokines/metabolism , Rats , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Cell Line , Colon/pathology , Colon/drug effects , Colon/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
8.
J Control Release ; 369: 591-603, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38582336

ABSTRACT

Ischemia stroke is one of the leading causes of death and disability worldwide. Owing to the limited delivery efficiency to the brain caused by the blood-brain barrier (BBB) and off-target effects of systemic treatment, it is crucial to develop an in situ drug delivery system to improve the therapeutic effect in ischemic stroke. Briefly, we report a multifunctional in situ hydrogel delivery system for the co-delivery of reactive oxygen species (ROS)-responsive nanoparticles loaded with atorvastatin calcium (DSPE-se-se-PEG@AC NPs) and ß-nerve growth factor (NGF), which is expected to remodel pathological microenvironment for improving cerebral ischemia injury. The in vitro results exhibited the multifunctional hydrogel scavenged oxygen-glucose deprivation (OGD)-induced free radical, rescued the mitochondrial function, and maintained the survival and function of neurons, hence reducing neuronal apoptosis and neuroinflammation, consequently relieving ischemia injury in hippocampal neurons cell line (HT22). In the rat ischemia stroke model, the hydrogel significantly minified cerebral infarction by regulating inflammatory response, saving apoptotic neurons, and promoting angiogenesis and neurogenesis. Besides, the hydrogel distinctly improved the rats' neurological deficits after cerebral ischemia injury over the long-term observation. In conclusion, the in-situ hydrogel platform has demonstrated promising therapeutic effects in both in vitro and in vivo studies, indicating its potential as a new and effective therapy.

9.
Inorg Chem ; 63(19): 8764-8774, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38686432

ABSTRACT

In-based halide perovskites have attracted a lot of attention because of their unique broadband emission properties. Herein, a series of In-based hybrid perovskites of (H2MP)2InCl7·H2O (1), (H2EP)2InCl7·H2O (2), (H2MP)2InBr7·H2O (3), and (H2EP)2InBr7·H2O (4) were synthesized under the control of halogen ions and organic cations. 1, 2, and 4 exhibit obvious photoluminescence properties with peaks at 392, 442, and 652 nm, respectively. The effects of the different components on the crystal structure and photoluminescence properties are discussed by calculating the structural distortion of the [InX6]3- octahedron. The photoluminescence properties of 1 and 4 were significantly improved after Sb3+ doping with PLQY values of 57.12 and 41.53%. Finally, a white LED was successfully fabricated with the two doped compounds coated onto the 365 nm blue LED chip.

10.
J Geriatr Cardiol ; 21(1): 90-103, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38440340

ABSTRACT

Objective: To investigate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity and its association with long-term clinical outcome in patients with coronary heart disease (CHD) undergoing percutaneous coronary intervention (PCI). Methods: In total, 675 patients were enrolled. Based on the platelet inhibition rate, patients were categorized into two groups: clopidogrel low responsiveness (CLR) and normal clopidogrel responsiveness (NCR). The CLR group was divided into ticagrelor and clopidogrel group based on the antiplatelet drugs used in the follow-up treatment. Patients were classified into three groups (normal metabolizer, intermediate metabolizer, and poor metabolizer) based on the CYP2C19 genotype. We aimed to evaluate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity. The cumulative rates of 12-month all-cause deaths, major adverse cardiovascular events (MACCEs), and bleeding events were calculated. Results: CLR was observed in 44.4% of the overall population. Significant differences were observed in the platelet inhibition rate of clopidogrel among the three metabolic genotypes (P < 0.05). At the 12-month follow-up, 13 patients (1.9%) died and 96 patients (14.2%) experienced MACCEs. Patients with CLR (9.6% vs. 11.7% vs. 22.1%, P < 0.05) or poor metabolizer (10.7% vs. 16.4% vs. 22.6%, P = 0.026) experienced a higher rate of MACCEs. A MACCEs risk score between zero and two was calculated. The highest incidence of MACCEs significantly increased with the 2-positive results, and the area under the curve (AUC) was 0.712 (95% CI: 0.650-0.774, P < 0.05). There was no significant difference between the group with a score of one and the occurrence of MACCEs (P > 0.05). Conclusions: Low response to clopidogrel in CHD patients is correlated with CYP2C19 gene polymorphism. CYP2C19 genotyping combined with platelet reactivity is an independent predictor of 12-months MACCEs in patients with clopidogrel treatment after PCI, which is better than either test alone.

11.
Food Res Int ; 181: 114094, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448096

ABSTRACT

The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.


Subject(s)
Camellia sinensis , Catechin , Tea , Commerce , DNA, Bacterial/genetics
12.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474548

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) is a widely expressed cation channel that plays an important role in many physiological and pathological processes. However, most TRPV4 drugs carry a risk of side effects. Moreover, existing screening methods are not suitable for the high-throughput screening (HTS) of drugs. In this study, a cell model and HTS method for targeting TRPV4 channel drugs were established based on a calcium-activated chloride channel protein 1 Anoctamin 1 (ANO1) and a double mutant (YFP-H148Q/I152L) of the yellow fluorescent protein (YFP). Patch-clamp experiments and fluorescence quenching kinetic experiments were used to verify that the model could sensitively detect changes in intracellular Ca2+ concentration. The functionality of the TRPV4 cell model was examined through temperature variations and different concentrations of TRPV4 modulators, and the performance of the model in HTS was also evaluated. The model was able to sensitively detect changes in the intracellular Ca2+ concentration and also excelled at screening TRPV4 drugs, and the model was more suitable for HTS. We successfully constructed a drug cell screening model targeting the TRPV4 channel, which provides a tool to study the pathophysiological functions of TRPV4 in vitro.


Subject(s)
High-Throughput Screening Assays , TRPV Cation Channels , TRPV Cation Channels/metabolism , Anoctamin-1 , Calcium/metabolism
13.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38460132

ABSTRACT

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Subject(s)
Iron Overload , Metabolic Diseases , Mice , Animals , Agouti-Related Protein/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Neurons/metabolism , Diet, High-Fat/adverse effects , Metabolic Diseases/metabolism , Iron/metabolism , Mice, Inbred C57BL
15.
Nature ; 628(8009): 758-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538800

ABSTRACT

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

16.
Sci Total Environ ; 923: 171423, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442762

ABSTRACT

BACKGROUND: Ambient particulate matter (PM) has been recognized as inducing oxidative stress, which could contribute to mitochondrial damage and dysfunction. However, studies investigating the association between ambient PM and mitochondria, particularly mitochondrial DNA copy number (mtDNA-CN), have yielded inconsistent results. METHODS: We conducted comprehensive literature searches to identify observational studies published before July 17, 2023, examining the association between ambient PM exposure and mtDNA-CN. Meta-analysis using random effects model was employed to calculate the pooled effect estimates for general individual exposures, as well as for prenatal exposure with specific trimester. Additionally, the quality and level of evidence for each exposure-outcome pair was evaluated. RESULTS: A total of 10 studies were included in the systematic review and meta-analysis. The results indicated that general individual exposure to PM2.5 (ß = -0.084, 95 % CI: -0.521, 0.353; I2 = 93 %) and PM10 (ß = 0.035, 95 % CI: -0.129, 0.199; I2 = 95 %) did not significantly affect mtDNA-CN. Prenatal exposure to PM2.5 (ß = 0.023, 95 % CI: -0.087, 0.133; I2 = 0 %) and PM10 (ß = 0.006, 95 % CI: -0.135; 0.147; I2 = 51 %) were also not significantly associated with mtDNA-CN in offspring. The level of evidence for each tested exposure-outcome pair was assessed as "inadequate." CONCLUSIONS: The findings of this systematic review and meta-analysis indicate that there is an "inadequate" strength of evidence for the association between general individual or prenatal exposure to ambient PM and mtDNA-CN. Future research necessitates studies with more rigorous design, enhanced control of confounding factors, and improved measures of exposure to substantiate our findings.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Female , Pregnancy , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , DNA, Mitochondrial/analysis , Air Pollution/analysis , DNA Copy Number Variations , Mitochondria , Environmental Exposure/analysis , Air Pollutants/toxicity , Air Pollutants/analysis
17.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Article in English | MEDLINE | ID: mdl-38457059

ABSTRACT

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Senescence-Associated Secretory Phenotype , Mesenchymal Stem Cells/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Humans , Animals , Mice , Cell Proliferation , Cell Survival , Cellular Senescence , Culture Media, Conditioned/pharmacology , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , MCF-7 Cells
18.
Front Neurorobot ; 18: 1349498, 2024.
Article in English | MEDLINE | ID: mdl-38333372

ABSTRACT

Insects exhibit remarkable abilities in navigating complex natural environments, whether it be evading predators, capturing prey, or seeking out con-specifics, all of which rely on their compact yet reliable neural systems. We explore the field of bio-inspired robotic vision systems, focusing on the locust inspired Lobula Giant Movement Detector (LGMD) models. The existing LGMD models are thoroughly evaluated, identifying their common meta-properties that are essential for their functionality. This article reveals a common framework, characterized by layered structures and computational strategies, which is crucial for enhancing the capability of bio-inspired models for diverse applications. The result of this analysis is the Strategic Prototype, which embodies the identified meta-properties. It represents a modular and more flexible method for developing more responsive and adaptable robotic visual systems. The perspective highlights the potential of the Strategic Prototype: LGMD-Universally Prototype (LGMD-UP), the key to re-framing LGMD models and advancing our understanding and implementation of bio-inspired visual systems in robotics. It might open up more flexible and adaptable avenues for research and practical applications.

19.
Gels ; 10(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38391474

ABSTRACT

Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human-computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors.

20.
BMJ Open Gastroenterol ; 11(1)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378656

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is often accompanied by increased excretion of hydrogen sulfide (H2S). This study aimed to explore the value of exhaled H2S in the diagnosis of CRC. METHODS: A total of 80 people with normal colonoscopy results and 57 patients with CRC were enrolled into the present observational cohort study. Exhaled oral and nasal H2S were detected by Nanocoulomb breath analyser. Results were compared between the two groups. Receiver operating characteristic (ROC) curves were analysed and area under the curves (AUCs) were calculated to assess the diagnostic value of exhaled H2S. Meanwhile, the clinicopathological features, including gender, lesion location and tumour staging of patients with CRC, were also collected and analysed. RESULTS: The amount of exhaled H2S from patients with CRC was significantly higher than that of those with normal colonoscopy results. The ROC curve showed an AUC value of 0.73 and 0.71 based on oral and nasal H2S detection, respectively. The exhaled H2S in patients with CRC was correlated with gender, lesion location and tumour progression, including depth of invasion, lymphatic metastasis and TNM (Tumor, Lymph Nodes, Metastasis) staging. CONCLUSION: Exhaled H2S analysis is a convenient and non-invasive detection method for diagnosing CRC, suggesting a potential role in population screening for CRC.


Subject(s)
Colorectal Neoplasms , Hydrogen Sulfide , Humans , Hydrogen Sulfide/analysis , Neoplasm Staging , ROC Curve , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...