Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Immunol ; 15: 1342213, 2024.
Article in English | MEDLINE | ID: mdl-38605954

ABSTRACT

Myasthenia gravis (MG) stands as a perplexing autoimmune disorder affecting the neuromuscular junction, driven by a multitude of antibodies targeting postsynaptic elements. However, the mystery of MG pathogenesis has yet to be completely uncovered, and its heterogeneity also challenges diagnosis and treatment. Growing evidence shows the differential expression of non-coding RNAs (ncRNAs) in MG has played an essential role in the development of MG in recent years. Remarkably, these aberrantly expressed ncRNAs exhibit distinct profiles within diverse clinical subgroups and among patients harboring various antibody types. Furthermore, they have been implicated in orchestrating the production of inflammatory cytokines, perturbing the equilibrium of T helper 1 cells (Th1), T helper 17 cells (Th17), and regulatory T cells (Tregs), and inciting B cells to generate antibodies. Studies have elucidated that certain ncRNAs mirror the clinical severity of MG, while others may hold therapeutic significance, showcasing a propensity to return to normal levels following appropriate treatments or potentially foretelling the responsiveness to immunosuppressive therapies. Notably, the intricate interplay among these ncRNAs does not follow a linear trajectory but rather assembles into a complex network, with competing endogenous RNA (ceRNA) emerging as a prominent hub in some cases. This comprehensive review consolidates the landscape of dysregulated ncRNAs in MG, briefly delineating their pivotal role in MG pathogenesis. Furthermore, it explores their promise as prospective biomarkers, aiding in the elucidation of disease subtypes, assessment of disease severity, monitoring therapeutic responses, and as novel therapeutic targets.


Subject(s)
Myasthenia Gravis , Humans , Myasthenia Gravis/therapy , Myasthenia Gravis/drug therapy , Th1 Cells , T-Lymphocytes, Regulatory , Neuromuscular Junction/pathology , Th17 Cells/pathology
2.
Front Microbiol ; 15: 1374406, 2024.
Article in English | MEDLINE | ID: mdl-38362499

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2023.1284864.].

3.
Front Microbiol ; 14: 1285229, 2023.
Article in English | MEDLINE | ID: mdl-38125563

ABSTRACT

Microcystis possesses the capacity to form colonies and blooms in lakes and reservoirs worldwide, causing significant ecological challenges in aquatic ecosystems. However, little is known about the determining factors of physico-chemical surface properties that govern the competitive advantage of Microcystis. Here, The physico-chemical surface properties of Microcystis wesenbergii and Microcystis aeruginosa, including specific surface area (SSA), hydrophobicity, zeta potential, and functional groups were investigated. Additionally, the extracellular polysaccharide (EPS) were analyzed. Laboratory-cultured Microcystis exhibited hydrophilic, a negative zeta potential and negatively charged. Furthermore, no significant relationship was shown between these properties and the cultivation stage. Microcystis wesenbergii exhibited low free energy of cohesion, high surface free energy, high growth rate, and high EPS content during the logarithmic phase. On the other hand, M. aeruginosa displayed lower free energy of cohesion, high surface free energy, high EPS content, and high growth rate during the stationary phase. These characteristics contribute to their respective competitive advantage. Furthermore, the relationship between EPS and surface properties was investigated. The polysaccharide component of EPS primarily influenced the SSA and total surface energy of Microcystis. Likewise, the protein component of EPS influenced hydrophobicity and surface tension. The polysaccharide composition, including glucuronic acid, xylose, and fructose, mainly influenced surface properties. Additionally, hydrophilic groups such as O-H and P-O-P played a crucial role in determining hydrophobicity in Microcystis. This study elucidates that EPS influenced the SSA, hydrophobicity, and surface free energy of Microcystis cells, which in turn impact the formation of Microcystis blooms and the collection.

4.
Front Microbiol ; 14: 1284864, 2023.
Article in English | MEDLINE | ID: mdl-38029206

ABSTRACT

Introduction: Biodiversity maintenance and its underlying mechanisms are central issues of ecology. However, predicting the composition turnovers of microbial communities at multiple spatial scales remains greatly challenging because they are obscured by the inconsistent impacts of climatic and local edaphic conditions on the assembly process. Methods: Based on the Illumina MeSeq 16S/18S rRNA sequencing technology, we investigated soil bacterial and eukaryotic communities in biocrusts with different successional levels at a subcontinental scale of Northern China. Results: Results showed that irrespective of spatial scale, bacterial α diversity increased but eukaryotic diversity decreased with the primary succession, whereas both ß diversities decreased at the subcontinental scale compared with smaller scales, indicating that the biogeographic pattern of soil microorganisms was balanced by successional convergence and distance decay effect. We found that the convergence of bacterial and eukaryotic communities was attributed to the turnovers of generalist and specialist species, respectively. In this process, edaphic and climatic factors showed unique roles in the changes of diversity at local/subcontinental scales. Moreover, the taxonomic diversity tended to be more susceptible to climatic and edaphic conditions, while biotic factors (photosynthesis and pigments) were more important to phylogenetic diversity. Conclusion: Taken together, our study provided comprehensive insights into understanding the pattern of microbial diversity at multiple spatial scales of drylands.

5.
Nutr Rev ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37523229

ABSTRACT

CONTEXT: Although several epidemiological studies have examined the association between coffee or tea intake and the risk of cognitive disorders, the results to date are inconsistent. OBJECTIVE: An updated systematic review and dose-response meta-analysis was conducted to confirm the association between coffee, tea, and caffeine consumption and the risk of cognitive disorders. DATA SOURCES: PubMed, Embase, and Web of Science were searched from inception to January 2022 for relevant studies, including dementia, Alzheimer disease (AD), and cognitive impairment or decline. DATA EXTRACTION: Two reviewers independently performed data extraction and assessed the study quality. DATA ANALYSIS: Restricted cubic splines were used to conduct the dose-response meta-analysis for coffee and tea intake. RESULTS: Twenty-two prospective studies and 11 case-control studies involving 389 505 participants were eligible for this meta-analysis. Coffee and tea consumption was linked to a lower risk of cognitive disorders, with an overall relative risk (RR) of 0.73 (95% CI: 0.60-0.86) and 0.68 (95% CI: 0.56-0.80), respectively. The subgroup analysis revealed that ethnicity, sex, and outcomes had significant effects on this association. Protection was stronger for men than that for women in both coffee and tea consumption. A nonlinear relationship was found between coffee consumption and AD risk, and the strength of protection peaked at approximately 2.5 cups/day (RR: 0.74; 95% CI: 0.59-0.93). A linear relationship was found between tea consumption and cognitive disorders, and the risk decreased by 11% for every 1-cup/day increment. CONCLUSION: This meta-analysis demonstrated that the consumption of 2.5 cups coffee/day minimizes the risk of AD, and 1 cup/day of tea intake leads to an 11% reduction in cognitive deficits. Effective interventions involving coffee and tea intake might prevent the occurrence of dementia.

6.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37204040

ABSTRACT

The patterns of biogeographic distribution and assembly processes of microbiota are of vital importance for understanding ecological adaptation and functioning maintenance. However, the role of morphological characteristics in microbial assembly is still poorly ascertained. Here, by integrating high-throughput sequencing and robust extrapolation of traits, we investigated taxonomic and phylogenetic turnovers of various cyanobacterial morphotypes in biocrusts to evaluate the contributions of deterministic and stochastic processes across a large scale of drylands in northwestern China. The results showed that the non-heterocystous filamentous category dominated biocrusts in the arid ecosystem and exhibited strong tolerance against environmental fluctuations. Despite the significant distance-decay relationship of ß-diversity detected in all categories, both species composition and phylogenetic turnover rates of coccoid cyanobacteria were higher than non-heterocystous filamentous and heterocystous morphotypes. Moreover, the assembly of cyanobacteria was driven by different ecological processes that the entire community and non-heterocystous filamentous morphotype were governed by deterministic processes, while stochasticity prevailed in heterocystous and coccoid cyanobacteria. Nonetheless, aridity can modulate the balance between determinism and stochasticity and prompt a shifting threshold among morphotypes. Our findings provide a unique perspective to understanding the critical role of microbial morphology in community assembly and facilitate the prediction of biodiversity loss under climate change.


Subject(s)
Cyanobacteria , Microbiota , Ecosystem , Phylogeny , Soil Microbiology , Cyanobacteria/genetics , Biodiversity
7.
Microorganisms ; 10(6)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35744770

ABSTRACT

How microbial communities respond to extreme conditions in the stratosphere remains unclear. To test this effect, cyanobacterial crusts collected from Tengger Desert were mounted to high balloons and briefly exposed (140 min) to high UV irradiation and low temperature in the stratosphere at an altitude of 32 km. Freezing and thawing treatments were simulated in the laboratory in terms of the temperature fluctuations during flight. Microbial community composition was characterized by sequencing at the level of DNA and RNA. After exposure to the stratosphere, the RNA relative abundances of Kallotenue and Longimicrobium increased by about 2-fold, while those of several dominant cyanobacteria genera changed slightly. The RNA relative abundances of various taxa declined after freezing, but increased after thawing, whereas cyanobacteria exhibited an opposite change trend. The DNA and RNA relative abundances of Nitrososphaeraceae were increased by 1.4~2.3-fold after exposure to the stratosphere or freezing. Exposure to stratospheric environmental conditions had little impact on the total antioxidant capacity, photosynthetic pigment content, and photosynthetic rate, but significantly increased the content of exopolysaccharides by 16%. The three treatments (stratospheric exposure, freezing, and thawing) increased significantly the activities of N-acetyl-ß-D-glucosidase (26~30%) and ß-glucosidase (14~126%). Our results indicated cyanobacterial crust communities can tolerate exposure to the stratosphere. In the defense process, extracellular organic carbon degradation and transformation play an important role. This study makes the first attempt to explore the response of microbial communities of cyanobacterial crusts to a Mars-like stratospheric extreme environment, which provides a new perspective for studying the space biology of earth communities.

8.
Front Microbiol ; 13: 848908, 2022.
Article in English | MEDLINE | ID: mdl-35495652

ABSTRACT

Archaea exhibit strong community heterogeneity with microhabitat gradients and are a non-negligible part of biocrust's microorganisms. The study on archaeal biogeography in biocrusts could provide new insights for its application in environmental restoration. However, only a few studies on assembly processes and co-occurrence patterns of the archaeal community in patchy biocrusts have been reported, especially considering the number of species pools (SPs). Here, we comprehensively collected biocrusts across 3,500 km of northern China. Different successional biocrusts from various regions contain information of local climate and microenvironments, which can shape multiple unique archaeal SPs. The archaeal community differences in the same successional stage exceeded the variations between successional stages, which was due to the fact that the heterogeneous taxa tended to exchange between unknown patches driven by drift. We also comparatively studied the driving forces of community heterogeneity across three to ten SPs, and assembly and co-occurrence patterns were systematically analyzed. The results revealed that the impact of spatial factors on biogeographic patterns was greater than that of environmental and successional factors and that impact decreased with the number of SPs considered. Meanwhile, community heterogeneity at the phylogenetic facet was more sensitive to these driving factors than the taxonomic facet. Subgroups 1 (SG1) and 2 (SG2) of the archaeal communities in biocrusts were dominated by Nitrososphaeraceae and Haloarchaea, respectively. The former distribution pattern was associated with non-salinity-related variables and primarily assembled by drift, whereas the latter was associated with salinity-related variables and primarily assembled by homogeneous selection. Finally, network analysis indicated that the SG1 network had a higher proportion of competition and key taxa than the SG2 network, but the network of SG2 was more complex. Our study suggested that the development of the archaeal community was not consistent with biocrusts succession. The dominant taxa may determine the patterns of community biogeography, assembly, and co-occurrence.

9.
PhytoKeys ; 194: 95-103, 2022.
Article in English | MEDLINE | ID: mdl-35586325

ABSTRACT

Hemilophiacardiocarpa (Brassicaceae), the sixth species of the Chinese endemic genus Hemilophia, is described and illustrated. This plant is found in the Jiaozishan Mountains in Dongchuan District, northern Yunnan, southwest China. Morphologically, it shows close relationships with H.rockii and H.pulchella, but differs from it in the leaf shape and size, inflorescence, flower size, shape of fruit and length of its pedicel. An updated key to the taxa of Hemilophia is provided.

10.
Water Res ; 217: 118385, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35405550

ABSTRACT

Aquatic ecosystems comprise almost half of total global methane emissions. Recent evidence indicates that a few strains of cyanobacteria, the predominant primary producers in bodies of water, can produce methane under oxic conditions with methylphosphonate serving as substrate. In this work, we have screened the published 2 568 cyanobacterial genomes for genetic elements encoding phosphonate-metabolizing enzymes. We show that phosphonate degradation (phn) gene clusters are widely distributed in filamentous cyanobacteria, including several bloom-forming genera. Algal growth experiments revealed that methylphosphonate is an alternative phosphorous source for four of five tested strains carrying phn clusters, and can sustain cellular metabolic homeostasis of strains under phosphorus stress. Liberation of methane by cyanobacteria in the presence of methylphosphonate occurred mostly during the light period of a 12 h/12 h diurnal cycle and was suppressed in the presence of orthophosphate, features that are consistent with observations in natural aquatic systems under oxic conditions. The results presented here demonstrate a genetic basis for ubiquitous methane emission via cyanobacterial methylphosphonate mineralization, while contributing to the phosphorus redox cycle.


Subject(s)
Cyanobacteria , Organophosphonates , Cyanobacteria/genetics , Cyanobacteria/metabolism , Ecosystem , Methane , Organophosphorus Compounds , Phosphorus/metabolism
11.
Sci Total Environ ; 831: 154756, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35339556

ABSTRACT

Seasonal growth and changes in biomass within communities are the core of ecosystem dynamics. Biocrusts play a prominent role as pioneers in dryland soils. However, the seasonal dynamics of biocrusts remain poorly resolved. In this study, we collected biocrusts across a successional gradient (cyanobacteria, cyanolichen, chlorolichen, and moss-dominated) from southeastern Tengger Desert (China) during the summer and autumn seasons, and explored seasonal changes in metabolism and biomass using multi-omics approaches. We found that Cyanobacteria and Ascomycota were the dominant active taxa and both exhibited higher abundances in autumn. We also found that the dominant primary producers in biocrusts strongly affected community-wide characteristics of metabolism. Along with seasonal differences in light energy utilization, utilization of inorganic energy sources exhibited higher expression in the summer while for organic sources, in the autumn. We found that overall metabolism was significantly regulated by the ratio of intracellular to extracellular polymer degradation, and affected by NO3-, PO43- and EC (in the summer)/NO2- (in the autumn). In summary, biocrust growth varied with seasonal variation in light energy utilization and complementary chemical energy sources, with the most suitable season varying with biocrust successional type.


Subject(s)
Cyanobacteria , Ecosystem , Biomass , Seasons , Soil , Soil Microbiology
12.
Sci Rep ; 12(1): 1034, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058486

ABSTRACT

Urban expansion leads to changes in the visual aesthetic quality and ecological degradation of the surrounding slope forest landscapes. Color is a crucial visual element to examine when viewing this large-scale slope forest landscape from a long distance. This is particularly true for the autumn color of slope forest, which is very attractive to the public. An exploration of the relationship between the change in color of a natural slope forest and its visual aesthetic quality enables the implementation of the configuration of superior aesthetic tree species. Therefore, it can provide aesthetic rules and a reference to configure local tree species to support their visual aesthetic quality, ecological sustainability and native biodiversity restoration in a local urban slope forest. However, such research is critically lacking. This study investigated the visual aesthetic quality of the color dynamics of a natural slope forest in Jiaozi Mountain, China in the autumn. We analyzed both the composition of tree species and the changes in color for each species of tree in nine forest sites that exhibited superior visual aesthetic quality. The results showed that the forests with superior visual aesthetic quality were more green, red, and yellow, had moderately higher saturation and value, more obvious color contrast, and diverse colors with primary and secondary contrast. Diverse and balanced color patches or a dominant color patch contrasted by many small patches with interspersed color components also highlighted the superior visual aesthetic quality of slope forest features. Different combinations of color features can result in high visual aesthetic quality. The 84 tree species in the superior visual aesthetic quality forests primarily displayed 10 types of color changes that varied as green, yellow, blue, red, withered yellow, withered red and gray.

13.
Microb Ecol ; 83(1): 100-113, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33733304

ABSTRACT

Photosynthetic microorganisms are widely distributed in the soil and play an important role in plant-free soil crusts. However, the distribution and environmental drivers of phototrophic microbial communities in physical soil crusts, where the abundance of cyanobacteria is low, are scarcely understood. Here, we performed high-throughput sequencing of pufM and 18S rRNA genes in soil crusts at different elevations on the Tibetan Plateau and used the data combined with environmental variables to analyze the diversity and structure of phototrophic microbial communities. We found that the dominant taxa of aerobic anoxygenic phototrophic bacteria (AAPB) and eukaryotic phototrophic microorganisms (EPM) were shown to shift with elevation. The phototrophic microbial diversity showed a single-peak pattern, with the lowest diversity of AAPB and highest diversity of EPM at middle elevations. Moreover, the elevation and soil property determined the phototrophic microbial community. Soil salts, especially Cl-, were the most important for AAPB. Likewise, soil nutrients, especially carbon, were the most important for EPM. The relationship between high-abundance taxa and environmental variables showed that Rhizobiales was significantly negatively correlated with salt ions and positively correlated with chlorophyll. Rhodobacterales showed the strongest and significant positive associations with Cl-. Chlorophyceae and Bacillariophyceae were positively correlated with CO32-. These results indicated that salinity and soil nutrients affected the diversity and structure of microbial communities. This study contributes to our understanding of the diversity, composition, and structure of photosynthetic microorganisms in physical soil crusts and helps in developing new approaches for controlling desertification and salinization and improving the desert ecological environment.


Subject(s)
Eukaryota , Soil , Bacteria, Aerobic/genetics , Nutrients , Soil/chemistry , Soil Microbiology , Tibet
14.
Environ Microbiol ; 24(1): 66-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34816560

ABSTRACT

Biocrusts provide numerous ecological functions in drylands. Recovering biocrusts via cyanobacterial inoculation recently gathered interest for ecological restoration, yet it still lacks long-term experiments to unravel biocrust community dynamics. To examine how cyanobacterial inoculants influenced local microbial community and biocrust development, we observed a 2 km2 (Qubqi Desert, China) inoculation experiment after 10 and 15 years, following biocrust formation. Our results revealed that biocrust development was in line with ecological regime shift, providing evidence for biocrust community succession, from cyanobacteria- to moss-dominated types. Associated with biocrust development, microbial communities differed significantly with less specialists compared to shifting sands. Cyanobacterial community analysis showed that Microcoleus vaginatus and Scytonema javanicum are an ideal inoculating model, as they were still dominating the community after 15 years since inoculation, while other nitrogen-fixing cyanobacteria occurred profusely with biocrust development. Biocrust community composition combined with thickness, Chl-a and exopolysaccharide measurements revealed the large variation of cyanobacterial ecological functions along biocrust development, suggesting a main function shift: from carbon fixation associated with exopolysaccharide secretion in bare sandy soils to nitrogen fixation in developed biocrusts. This large-scale field study verifies that cyanobacterial inoculation accelerates biocrust development and forwards succession, shaping the biocrust community composition over a long time.


Subject(s)
Bryophyta , Cyanobacteria , Microbiota , Ecosystem , Soil , Soil Microbiology
15.
Environ Microbiol Rep ; 13(6): 884-898, 2021 12.
Article in English | MEDLINE | ID: mdl-34533274

ABSTRACT

Cyanobacteria, as key biocrust components, provide a variety of ecosystem functions in drylands. In this study, to identify whether a cyanobacterial community shift is involved in biocrust succession and whether this is linked to altered ecological functions, we investigated cyanobacterial composition, total carbon and nitrogen contents of biocrusts in the Gurbantunggut Desert. Our findings showed that the biocrust cyanobacteria in the Gurbantunggut desert were mostly filamentous, coexisting with abundant unicellular colonial Chroococcidiopsis. Heterocystous Nostoc, Scytonema and Tolypothrix always represented the majority of biocrust nitrogen-fixing organisms, comprising an average of 92% of the nifH gene reads. Community analysis showed a clear shift in prokaryotic community composition associated with biocrust succession from cyanobacteria- to lichen- and moss-dominated biocrusts, and filamentous non-nitrogen-fixing cyanobacteria-dominated communities were gradually replaced by nitrogen-fixing and unicellular colonial communities. Along the succession, there were concomitant reductions in cyanobacterial relative abundance, whereas Chl-a, total carbon and nitrogen contents increased. Concurrently, distinct carbon and nitrogen stores shifts occurred, implying that the main ecological contribution of cyanobacteria in biocrusts changes from carbon- to nitrogen-fixation along with the succession. Our results suggest that any activity that reverses biocrust succession will influence cyanobacterial community composition and eventually lead to large reductions in soil carbon and nitrogen stores.


Subject(s)
Bryophyta , Cyanobacteria , Cyanobacteria/genetics , Desert Climate , Ecosystem , Soil , Soil Microbiology
16.
Front Microbiol ; 12: 633428, 2021.
Article in English | MEDLINE | ID: mdl-33815315

ABSTRACT

The successional ecology of nitrogen cycling in biocrusts and the linkages to ecosystem processes remains unclear. To explore this, four successional stages of natural biocrust with five batches of repeated sampling and three developmental stages of simulated biocrust were studied using relative and absolute quantified multi-omics methods. A consistent pattern across all biocrust was found where ammonium assimilation, mineralization, dissimilatory nitrite to ammonium (DNiRA), and assimilatory nitrate to ammonium were abundant, while denitrification medium, N-fixation, and ammonia oxidation were low. Mathematic analysis showed that the nitrogen cycle in natural biocrust was driven by dissolved organic N and NO3 -. pH and SO4 2- were the strongest variables affecting denitrification, while C:(N:P) was the strongest variable affecting N-fixation, DNiRA, nitrite oxidation, and dissimilatory nitrate to nitrite. Furthermore, N-fixation and DNiRA were closely related to elemental stoichiometry and redox balance, while assimilatory nitrite to ammonium (ANiRA) and mineralization were related to hydrological cycles. Together with the absolute quantification and network models, our results suggest that responsive ANiRA and mineralization decreased during biocrust succession; whereas central respiratory DNiRA, the final step of denitrification, and the complexity and interaction of the whole nitrogen cycle network increased. Therefore, our study stresses the changing environmental functions in the biocrust N-cycle, which are succession-dependent.

17.
NPJ Biofilms Microbiomes ; 7(1): 15, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547284

ABSTRACT

Biocrusts play critical eco-functions in many drylands, however it is challenging to explore their community assembly, particularly within patched successional types and across climate zones. Here, different successional biocrusts (alga, lichen, and moss-dominated biocrusts) were collected across the northern China, and assembly of biocrust microbial communities was investigated by high-throughput sequencing combined with measurements of soil properties and microclimate environments. Bacterial and eukaryotic communities showed that the maximum and minimum community variation occurred across longitude and latitude, respectively. In the regions where all three stages of biocrusts were involved, the highest community difference existed between successional stages, and decreased with distance. The community assembly was generally driven by dispersal limitation, although neutral processes have controlled the eukaryotic community assembly in hyperarid areas. Along the succession, bacterial community had no obvious patterns, but eukaryotic community showed increasing homogeneity, with increased species sorting and decreased dispersal limitation for community assembly. Compared to early successional biocrusts, there were higher microbial mutual exclusions and more complex networks at later stages, with distinct topological features. Correlation analysis further indicated that the balance between deterministic and stochastic processes might be mediated by aridity, salinity, and total phosphorus, although the mediations were opposite for bacteria and eukaryotes.


Subject(s)
Bacteria/classification , Eukaryota/classification , Sequence Analysis, RNA/methods , Bacteria/genetics , Bacteria/isolation & purification , China , Eukaryota/genetics , Eukaryota/isolation & purification , High-Throughput Nucleotide Sequencing , Linear Models , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Soil Microbiology , Stochastic Processes
18.
ISME J ; 15(1): 211-227, 2021 01.
Article in English | MEDLINE | ID: mdl-32943748

ABSTRACT

Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats. (3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.


Subject(s)
Cyanobacteria , Adaptation, Physiological/genetics , Cyanobacteria/genetics , Ecosystem , Genomics , Humans , Phylogeny
19.
Biotechnol Bioeng ; 117(12): 3727-3738, 2020 12.
Article in English | MEDLINE | ID: mdl-32749671

ABSTRACT

Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12-48 hr, and finally decreased after 48-72 hr, whereas TAG increased (0-48 hr) and then decreased (48-72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.


Subject(s)
Biofuels , Biomass , Chlorophyta/growth & development , Membrane Lipids/biosynthesis , Microalgae/growth & development , Osmotic Pressure/drug effects , Sodium Chloride/pharmacology
20.
Microb Ecol ; 78(4): 936-948, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30949750

ABSTRACT

In dryland regions, biological soil crusts (BSCs) have numerous important ecosystem functions. Crust species and functions are, however, highly spatially heterogeneous and remain poorly understood at a range of scales. In this study, chlorophyll fluorescence imaging was used to quantify millimeter-scale patterns in the distribution and activity of photosynthetic organisms in BSCs of different successional stages (including cyanobacterial, lichen, moss three main successional stages and three intermixed transitional stages) from the Tengger Desert, China. Chlorophyll fluorescence images derived from the Imaging PAM (Pulse Amplitude Modulation) showed that with the succession from cyanobacterial to lichen and to moss crusts, crust photosynthetic efficiency (including the maximum and effective photosynthetic efficiency, respectively) and fluorescence coverage increased significantly (P < 0.05), and that increasing photosynthetically active radiation (PAR) reduced the effective photosynthetic efficiency (Yield). The distribution of photosynthetic organisms in crusts determined Fv/Fm (ratio of variable fluorescence to maximum fluorescence) frequency pattern, although the photosynthetic heterogeneity (SHI index) was not significantly different (P > 0.05) between cyanobacterial and moss crusts, and showed a unimodal pattern of Fv/Fm values. In contrast, photosynthetic heterogeneity was significantly higher in lichen, cyanobacteria-moss and lichen-moss crusts (P < 0.05), with a bimodal pattern of Fv/Fm values. Point pattern analysis showed that the distribution pattern of chlorophyll fluorescence varied at different spatial scales and also among the different crust types. These new results provide a detailed (millimeter-scale) insight into crust photosynthetic mechanisms and spatial distribution patterns associated with their community types. Collectively, this information provides an improved theoretical basis for crust maintenance and management in dryland regions.


Subject(s)
Bryophyta/physiology , Cyanobacteria/physiology , Desert Climate , Lichens/physiology , Photosynthesis , Soil Microbiology , China , Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...