Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Gastroenterology ; 166(6): 1069-1084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445519

ABSTRACT

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined in vitro and in vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Subject(s)
Antigens, CD , B-Lymphocytes , CD8-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Integrin alpha Chains , Memory T Cells , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Tertiary Lymphoid Structures , Chemokine CXCL13/metabolism , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Granzymes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Immunologic Memory , Signal Transduction/immunology , Tumor Microenvironment/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Mice , Immunotherapy/methods , Cell Line, Tumor
2.
Hepatology ; 77(1): 48-64, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35262957

ABSTRACT

BACKGROUND AND AIMS: Type 3 innate lymphoid cells (ILC3s) are essential for host defense against infection and tissue homeostasis. However, their role in the development of HCC has not been adequately confirmed. In this study, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) derived from intestinal microbiota in ILC3 regulation. APPROACH AND RESULTS: We report that Lactobacillus reuteri was markedly reduced in the gut microbiota of mice with HCC, accompanied by decreased SCFA levels, especially acetate. Additionally, transplantation of fecal bacteria from wild-type mice or L. reuteri could promote an anticancer effect, elevate acetate levels, and reduce IL-17A secretion in mice with HCC. Mechanistically, acetate reduced the production of IL-17A in hepatic ILC3s by inhibiting histone deacetylase activity, increasing the acetylation of SRY (sex-determining region Y)-box transcription factor 13 (Sox13) at site K30, and decreasing expression of Sox13. Moreover, the combination of acetate with programmed death 1/programmed death ligand 1 blockade significantly enhanced antitumor immunity. Consistently, tumor-infiltrating ILC3s correlated with negative prognosis in patients with HCC, which could be functionally mediated by acetate. CONCLUSIONS: These findings suggested that modifying bacteria, changing SCFAs, reducing IL-17A-producing ILC3 infiltration, and combining with immune checkpoint inhibitors will contribute to the clinical treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Mice , Animals , Interleukin-17 , Immunity, Innate , Carcinoma, Hepatocellular/metabolism , Lymphocytes , Liver Neoplasms/metabolism , Fatty Acids, Volatile/metabolism , Acetates
3.
Cancer Immunol Res ; 10(10): 1224-1240, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35881964

ABSTRACT

The host microbiota is closely associated with tumor initiation and progression in multiple solid tumors including gastric cancer. The aim of this study was to investigate in patients with gastric cancer whether there are alterations in gastric microbiota and any potential association these may have with immune dysregulation. 16S rRNA gene sequencing was used to analyze tumor microbiota of 53 patients with gastric cancer and gastric mucosal tissue microbiota of 30 patients with chronic gastritis. The effect of microbiota on the tumor microenvironment (TME) was studied by single-cell sequencing, immunohistochemistry, multiplex immunofluorescence staining, and flow cytometry, as well as in a mouse model of primary gastric cancer. The gastric cancer microbiota was characterized by reduced microbial diversity and enrichment of the Oceanobacter, Methylobacterium, and Syntrophomonas genera. Intratumoral Methylobacterium was significantly associated with poor prognoses in patients with gastric cancer. It also was inversely correlated with the frequency of CD8+ tissue-resident memory T (TRM) cells in the TME. TGFß was significantly reduced in gastric cancer samples with higher abundance of Methylobacterium. Finally, we verified that Methylobacterium can decrease TGFß expression and CD8+ TRM cells in the tumor by establishing a mouse model of primary gastric cancer. The results suggest that tumor microbiota and exhausted CD8+ TRM cells in the TME of gastric cancer are significantly correlated, and that Methylobacterium may play a role in gastric carcinogenesis.


Subject(s)
Gastrointestinal Microbiome , Stomach Neoplasms , Animals , CD8-Positive T-Lymphocytes , Humans , Memory T Cells , Mice , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Stomach Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
4.
Oncogene ; 41(6): 865-877, 2022 02.
Article in English | MEDLINE | ID: mdl-34862460

ABSTRACT

In many types of cancer, tumor cells prefer to use glycolysis as a major energy acquisition method. Here, we found that the 18fluoro-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-based markers were positively associated with the expression of programmed cell death ligand 1 (PD-L1), pyruvate kinase M2 (PKM2), both of which indicate poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. In this study, we confirmed that transforming growth factor-beta1 (TGF-ß1) secreted by tumor-associated macrophages (TAMs) was a key factor contributing to the expression of PD-L1 in PDAC cells by inducing the nuclear translocation of PKM2. Using co-immunoprecipitation and chromatin immunoprecipitation assays, we demonstrated that the interaction between PKM2 and signal transducer and activator of transcription 1 (STAT1) was enhanced by TGF-ß1 stimulation, which facilitated the transactivation of PD-L1 by the binding of PKM2 and STAT1 to its promoter. In vivo, PKM2 knockdown decreased PD-L1 expression in PDAC cells and inhibited tumor growth partly by promoting natural killer cell activation and function, and the combination of PD-1/PD-L1 blockade with PKM2 knockdown limited tumor growth. In conclusion, PKM2 significantly contributes to TAM-induced PD-L1 overexpression and immunosuppression, providing a novel target for immunotherapies for PDAC.


Subject(s)
Pyruvate Kinase
5.
Microb Pathog ; 159: 105151, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34450200

ABSTRACT

CD4+ CD8αα+ double-positive intraepithelial T lymphocytes (DP T cells), a newly characterized subset of intraepithelial T cells, are reported to contribute to local immunosuppression. However, the presence of DP T cells in Helicobacter. pylori -induced gastritis and their relationship with disease prognosis has yet to be elucidated. In this study, a chronic gastritis model was established by infecting mice with Helicobacter felis. Gastric-infiltrating lymphocytes were isolated from these mice and analyzed by flow cytometry. The frequency of DP T cells in H. felis-induced gastritis mice was higher than that in uninfected mice. The gastric DP T cells were derived from lamina propria cells but were predominantly distributed in the gastric epithelial layer. These gastric DP T cells also exhibited anti-inflammatory functions, and they inhibited the maturation of dendritic cells and proliferation of CD4+ T lymphocytes in vitro. Elimination of DP T cells simultaneously resulted in severe gastritis and a reduction of H. felis load in vivo. Finally, vaccine mixed with different adjuvants was used to explore the relationship between vaccine efficacy and DP cells. Silk fibroin as the vaccine delivery system enhanced vaccine efficacy by reducing the number of DP T cells. This study demonstrated that DP T cells perform an immunosuppressive role in Helicobacter felis-induced gastritis, and consequently, DP T cells may affect disease prognosis and vaccine efficacy.


Subject(s)
Helicobacter felis , T-Lymphocytes , Animals , CD4-Positive T-Lymphocytes , Epithelium , Gastric Mucosa , Inflammation , Mice
6.
Front Immunol ; 12: 788640, 2021.
Article in English | MEDLINE | ID: mdl-35095864

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the most common pathological type of primary liver cancer. The lack of prognosis indicators is one of the challenges in HCC. In this study, we investigated the combination of tertiary lymphoid structure (TLS) and several systemic inflammation parameters as a prognosis indicator for HCC. Materials and Methods: We retrospectively recruited 126 postoperative patients with primary HCC. The paraffin section was collected for TLS density assessment. In addition, we collected the systemic inflammation parameters from peripheral blood samples. We evaluated the prognostic values of those parameters on overall survival (OS) using Kaplan-Meier curves, univariate and multivariate Cox regression. Last, we plotted a nomogram to predict the survival of HCC patients. Results: We first found TLS density was positively correlated with HCC patients' survival (HR=0.16, 95% CI: 0.06 - 0.39, p < 0.0001), but the power of TLS density for survival prediction was found to be limited (AUC=0.776, 95% CI:0.772 - 0.806). Thus, we further introduced several systemic inflammation parameters for survival analysis, we found neutrophil-to-lymphocyte ratio (NLR) was positively associated with OS in univariate Cox regression analysis. However, the combination of TLS density and NLR better predicts patient's survival (AUC=0.800, 95% CI: 0.698-0.902, p < 0.001) compared with using any single indicator alone. Last, we incorporated TLS density, NLR, and other parameters into the nomogram to provide a reproducible approach for survival prediction in HCC clinical practice. Conclusion: The combination of TLS density and NLR was shown to be a good predictor of HCC patient survival. It also provides a novel direction for the evaluation of immunotherapies in HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Lymphocytes/pathology , Neutrophils/pathology , Tertiary Lymphoid Structures/pathology , Female , Humans , Inflammation/pathology , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Prognosis , Retrospective Studies , Survival Analysis
7.
Emerg Microbes Infect ; 9(1): 2289-2302, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33000989

ABSTRACT

Tissue-resident memory T (TRM) cells, located in the epithelium of most peripheral tissues, constitute the first-line defense against pathogen infections. Our previous study reported that gastric subserous layer (GSL) vaccination induced a "pool" of protective tissue-resident memory CD4+T (CD4+TRM) cells in the gastric epithelium. However, the mechanistic details how CD4+TRM cells form in the gastric epithelium are unknown. Here, our results suggested that the vaccine containing CCF in combination with Silk fibroin hydrogel (SF) broadened the distribution of gastric intraepithelial CD4+TRM cells. It was revealed that the gastric intraepithelial TRM cells were even more important than circulating memory T cells against infection by Helicobacter felis. It was also shown that gastric-infiltrating neutrophils were involved as indispensable mediators which secreted CXCL10 to chemoattract CXCR3+CD4+T cells into the gastric epithelium. Blocking of CXCR3 or neutrophils significantly decreased the number of gastric intraepithelial CD4+TRM cells due to reduced recruitment of CD4+T cells. This study demonstrated the protective efficacy of gastric CD4+TRM cells against H. felis infection, and highlighted the influence of neutrophils on gastric intraepithelial CD4+TRM cells formation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Fibroins/administration & dosage , Helicobacter Infections/prevention & control , Helicobacter felis/immunology , Animals , Bacterial Vaccines , CD8-Positive T-Lymphocytes/metabolism , Chemokine CXCL10/genetics , Fibroins/chemistry , Fibroins/immunology , Gastric Mucosa/immunology , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Hydrogels , Immunologic Memory , Mice , Neutrophils/metabolism , Receptors, CXCR3/genetics
8.
J Immunol Res ; 2020: 1480281, 2020.
Article in English | MEDLINE | ID: mdl-32411786

ABSTRACT

BACKGROUND: In situ vaccination-induced local inflammatory response resulted in the establishment of a pool of tissue-resident memory T (TRM) cells and new vessels after the resolution of inflammation. TRM cells have received increasing attention; however, the role of new vessels in protective response is still unknown. MATERIALS AND METHODS: We performed the laparotomy to access the stomach and injected alum-based vaccine into the gastric subserous layer (GSL). At 28 days post vaccination, a parabiosis mouse model along with depletion of anti-CD90.2 antibody was employed to explore the function of perivascular lymphocyte clusters in recall responses. The composition of the gastric lymphocyte clusters was analyzed by immunofluorescence staining. Antibody responses were detected using ELISA. Gastric lymphocytes were analyzed using flow cytometry. RESULTS: GSL vaccination induced the formation of new vessels in the inflamed region. These new vessels were different from native vessels in that they were generally accompanied by perivascular lymphocyte clusters that mainly consisted of CD90-expressing cells. Additionally, histological analysis revealed the presence of CD4+ and CD8+ T cells in the perivascular lymphocyte clusters. Administration of a dose of an anti-CD90.2 antibody to GSL-vaccinated mice resolved these clusters. The efficacy of protection was compared in the parabiosis mice. Upon challenge, the presence of perivascular lymphocyte clusters was responsible for the fast recall response, as depletion of these clusters by CD90.2 antibody administration resulted in decreased expressions of VCAM-1, Madcam-1, and TNF-α, as well as lower recruitment of proinflammatory immune cells, decreased antibody levels, and poor protection. CONCLUSIONS: Our research demonstrates that in situ vaccination-induced regional inflammatory response contributes to optimal recall response not only by establishing a CD4+ TRM pool but also by creating an "expressway," i.e., perivascular lymphocyte cluster.


Subject(s)
Bacterial Vaccines/administration & dosage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Helicobacter Infections/prevention & control , Helicobacter pylori/immunology , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Bacterial Vaccines/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Gastric Mucosa/cytology , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Humans , Immunologic Memory , Injections, Intralesional , Mice , Thy-1 Antigens/antagonists & inhibitors , Thy-1 Antigens/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
9.
Helicobacter ; 24(5): e12652, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31414552

ABSTRACT

BACKGROUND: Tissue-resident memory T cells accelerate the clearance of pathogens during recall response. However, whether CD4+ TRM cells themselves can provide gastric immunity is unclear. MATERIALS AND METHODS: We established a parabiosis model between the enhanced green fluorescent protein and wild-type mice that the circulation system was shared, and the wild-type partner was vaccinated with H pylori vaccine composed of CCF and silk fibroin in gastric subserous layer to induce gastric EGFP+ CD4+ TRM cells. Antigen-specific EGFP+ CD4+ T cells and proliferous TRM cells were analyzed by flow cytometry. The colonization of H pylori was detected by quantitative real-time PCR. EGFP+ CD4+ TRM cells and the inflammation of the stomach were observed by histology. RESULTS: A parabiosis animal model was employed to identify the cells that introduced by vaccination in GSL. Antigen-specific EGFP+ CD4+ T cells could be detected at day 7 post-vaccination. Thirty days later, EGFP+ CD4+ TRM cells were established with a phenotype of CD69+ CD103- . Of note, we found that when circulating lymphocytes were depleted by FTY720 administration, these TRM cells could proliferate in situ and differentiate into effector Th1 cells after H pylori challenge. A decrease in H pylori colonization was observed in the vaccinated mice but not unvaccinated mice. Further, we found that although FTY720 was administrated, mounted pro-inflammatory myeloid cells still emerged in the stomach of the vaccinated mice, which might contribute to the reduction of H pylori colonization. CONCLUSIONS: Our study reveals that H pylori vaccine-induced CD4+ TRM cells can proliferate and differentiate in situ to enhance gastric local immunity during recall response.


Subject(s)
Bacterial Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , Gastric Mucosa/immunology , Helicobacter Infections/prevention & control , Helicobacter pylori/immunology , Immunologic Memory , Animals , Bacterial Vaccines/administration & dosage , Cell Proliferation , Disease Models, Animal , Female , Flow Cytometry , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology
10.
Front Immunol ; 10: 1115, 2019.
Article in English | MEDLINE | ID: mdl-31156652

ABSTRACT

Tissue-resident memory T (Trm) cells are enriched at the sites of previous infection and required for enhanced protective immunity. However, the emergence of Trm cells and their roles in providing protection are unclear in the field of Helicobacter pylori (H. pylori) vaccinology. Here, our results suggest that conventional vaccine strategies are unable to establish a measurable antigen (Ag)-specific memory cell pool in stomach; in comparison, gastric subserous injection of mice with micro-dose of Alum-based H. pylori vaccine can induce a pool of local CD4+ Trm cells. Regional recruitment of Ag-specific CD4+ T cells depends on the engagement of Ag and adjuvant-induced inflammation. Prior subcutaneous vaccination enhanced this recruitment. A stable pool of Ag-specific CD4+ T cells can be detected for 240 days. Two weeks of FTY720 administration in immune mice suggests that these cells do not experience the recirculation. Immunohistochemistry results show that close to the vaccination site, abundant CD4+T cells locate on epithelial niches, independent of lymphocyte cluster. Paradigmatically, Ag-specific CD4+ T cells with a phenotype of CD69+CD103- are preferential on lymphocytes isolated from epithelium. Upon Helicobacter infection, CD4+ Trm cells orchestrate a swift recall response with the recruitment of circulating antigen-specific Th1/Th17 cells to trigger a tissue-wide pathogen clearance. This study investigates the vaccine-induced gastric CD4+ Trm cells in a mice model, and highlights the need for designing a vaccine strategy against H. pylori by establishing the protective CD4+ Trm cells.


Subject(s)
Bacterial Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , T-Lymphocytes, Regulatory/physiology , Alum Compounds , Animals , Disease Resistance , Female , Humans , Immunologic Memory , Lymphocyte Activation , Mice , Serous Membrane/metabolism , Vaccination
11.
Appl Microbiol Biotechnol ; 103(9): 3847-3861, 2019 May.
Article in English | MEDLINE | ID: mdl-30852661

ABSTRACT

Heat-killed probiotics or microbial autologous components show multiple activities on modulating host immune responses towards tolerance or vice versus aggressiveness. Gram-positive enhancer matrix particles (GEMs), the non-genetically modified particles which composed of the cell wall derived from Lactococcus lactis (L. lactis), were used as a typical microbial molecule to investigate the mechanism of opposite immune responses generated in disparate scenarios. The results of stool 16S rRNA Illumina sequencing suggested that the overwhelming number of mice pre-administered with GEMs showed the expansion of Bacteroidetes but contraction of Verrucomicrobia. Co-administration GEMs and antibiotics could preserve the microbial diversity, even though the abundance of gut microbes was largely depleted by antibiotics. Additionally, dendritic cells (DCs) from mice receiving GEMs rather than DCs that in vitro treated with GEMs induced the expansion of regulatory T cells (Tregs), witnessing the critical role of gut flora alteration. Importantly, this alteration provided protection to alleviate dextran sulfate sodium (DSS)-induced intestinal inflammation. On the other hand, in the context of Helicobacter felis (H. felis) infection, the mice pre-administrated with GEMs exhibited a comparably potent gastric immunity with the elevated expression of IFN-γ, IL-17, and multiple anti-microbial factors, leading to the reduced burden of H. felis. However, tolerance for both DSS-induced intestinal inflammation and immunity against H. felis was depleted in a mice model lacking of transforming growth factor-ß1 (TGF-ß1) in myeloid cells. These findings suggest that GEMs can modulate host immune responses bidirectionally according to context, and may serve as a supplement for antibiotic treatment.


Subject(s)
Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Helicobacter Infections/immunology , Lactococcus lactis/physiology , Myeloid Cells/immunology , Transforming Growth Factor beta1/immunology , Animals , Dendritic Cells/immunology , Female , Gastrointestinal Microbiome , Helicobacter/physiology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Humans , Lactococcus lactis/genetics , Mice, Inbred C57BL , Probiotics/administration & dosage , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/genetics
12.
Helicobacter ; 23(6): e12536, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30247802

ABSTRACT

BACKGROUND: Toxic adjuvant is considered as an indispensable constituent for oral Helicobacter pylori (H. pylori) vaccines. However, the elaborate role of toxic adjuvant in the initiation of adaptive immune response is largely undescribed. MATERIALS AND METHODS: We employed an acid-resistant HP55/PLGA nanoparticles (NPs) delivery system encapsulating three antigens (Hsp, Nap, and Lpp20) from H. pylori and accompanied with three adjuvants (LPS, CpG, and chimeric flagellum (CF)) to explore the underlying mechanism of the adjuvant constituent. H. pylori-specific antibody responses were detected by ELISA. Gastric inflammatory and Th1/Th17 responses were analyzed by flow cytometry. Expressions of inflammatory cytokines were measured by quantitative real-time PCR. RESULTS: In bone marrow-derived dendritic cells' (BMDCs) model, the addition of toxic adjuvants is responsible for the proinflammatory function, but not the mature phenotype of BMDCs. In vivo, intestinal loop injection with NPs + LPS, rather than NPs alone, altered the dendritic cell (DC) phenotypes in mesenteric lymph nodes and drove a local proinflammatory microenvironment. In a prophylactic vaccination model, mice immunized with NPs + adjuvants significantly reduced the gastric colonization of H. pylori, induced antigen-specific antibody responses and Th1/Th17 cell responses. After H. pylori challenge, these mice showed potent recall responses involving both neutrophil and inflammatory monocyte infiltration. Additionally, TLR4 knockout mice were immunized with NPs + LPS and NPs + CF, respectively; only the recipients of NPs + CF orchestrated a protective response to control bacterial infection. CONCLUSIONS: Our study indicated that toxic adjuvants within oral H.pylori vaccines altered the function and phenotype of dendritic cells and facilitated the establishment of proinflammatory microenvironment to initiate adaptive immune responses.


Subject(s)
Bacterial Vaccines/immunology , Dendritic Cells/metabolism , Helicobacter pylori/immunology , Adjuvants, Immunologic , Animals , Bone Marrow Cells/cytology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Real-Time Polymerase Chain Reaction , Th1 Cells/metabolism , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...