Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473250

ABSTRACT

BACKGROUND: In the application of APTw protocols for evaluating tumors and parotid glands, inhomogeneity and hyperintensity artifacts have remained an obstacle. This study aimed to improve APTw imaging quality and evaluate the feasibility of difference B1 values to detect parotid tumors. METHODS: A total of 31 patients received three APTw sequences to acquire 32 lesions and 30 parotid glands (one patient had lesions on both sides). Patients received T2WI and 3D turbo-spin-echo (TSE) APTw imaging on a 3.0 T scanner for three sequences (B1 = 2 µT, 1 µT, and 0.7 µT in APTw 1, 2, and 3, respectively). APTw image quality was evaluated using four-point Likert scales in terms of integrity and hyperintensity artifacts. Image quality was compared between the three sequences. An evaluable group and a trustable group were obtained for APTmean value comparison. RESULTS: Tumors in both APT2 and APT3 had fewer hyperintensity artifacts than in APT1. With B1 values decreasing, tumors had less integrity in APTw imaging. APTmean values of tumors were higher than parotid glands in traditional APT1 sequence though not significant, while the APTmean subtraction value was significantly different. CONCLUSIONS: Applying a lower B1 value could remove hyperintensity but could also compromise its integrity. Combing different APTw sequences might increase the feasibility of tumor detection.

2.
Quant Imaging Med Surg ; 14(1): 273-290, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223040

ABSTRACT

Background: Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are the two mimic autoimmune diseases of the central nervous system, which are rare in East Asia. Quantitative detection of contrast-enhancing lesions (CELs) on contrast-enhancing T1-weighted magnetic resonance (MR) images is of great significance for assessing the disease activity of MS and NMOSD. However, it is challenging to develop automatic segmentation algorithms due to the lack of data. In this work, we present an automatic segmentation model of CELs based on Fully Convolutional with Attention DenseNet (FCA-DenseNet) and transfer learning strategy to address the challenge of CEL quantification in small-scale datasets. Methods: A transfer learning approach was employed in this study, whereby pretraining was conducted using 77 MS subjects from the open access datasets (MICCAI 2016, MICCAI 2017, ISBI 2015) for white matter hyperintensity segmentation, followed by fine-tuning using 24 MS and NMOSD subjects from the local dataset for CEL segmentation. The proposed FCA-DenseNet combined the Fully Convolutional DenseNet and Convolutional Block Attention Module in order to improve the learning capability. A 2.5D data slicing strategy was used to process complex 3D MR images. U-Net, ResUNet, TransUNet, and Attention-UNet are used as comparison models to FCA-DenseNet. Dice similarity coefficient (DSC), positive predictive value (PPV), true positive rate (TPR), and volume difference (VD) are used as evaluation metrics to evaluate the performances of different models. Results: FCA-DenseNet outperforms all other models in terms of all evaluation metrics, with a DSC of 0.661±0.187, PPV of 0.719±0.201, TPR of 0.680±0.254, and VD of 0.388±0.334. Transfer learning strategy has achieved success in building segmentation models on a small-scale local dataset where traditional deep learning approaches fail to train effectively. Conclusions: The improved FCA-DenseNet, combined with transfer learning strategy and 2.5D data slicing strategy, has successfully addressed the challenges in constructing deep learning models on small-scale datasets, making it conducive to clinical quantification of brain CELs and diagnosis of MS and NMOSD.

3.
AJNR Am J Neuroradiol ; 44(12): 1464-1470, 2023 12.
Article in English | MEDLINE | ID: mdl-38081676

ABSTRACT

BACKGROUND AND PURPOSE: Conventional MR imaging is not sufficient to discern the H3 K27-altered status of spinal cord diffuse midline glioma. This study aimed to develop a radiomics-based model based on preoperative T2WI to determine the H3 K27-altered status of spinal cord diffuse midline glioma. MATERIALS AND METHODS: Ninety-seven patients with confirmed spinal cord diffuse midline gliomas were retrospectively recruited and randomly assigned to the training (n = 67) and test (n = 30) sets. One hundred seven radiomics features were initially extracted from automatically-segmented tumors on T2WI, then 11 features selected by the Pearson correlation coefficient and the Kruskal-Wallis test were used to train and test a logistic regression model for predicting the H3 K27-altered status. Sensitivity analysis was performed using additional random splits of the training and test sets, as well as applying other classifiers for comparison. The performance of the model was evaluated through its accuracy, sensitivity, specificity, and area under the curve. Finally, a prospective set including 28 patients with spinal cord diffuse midline gliomas was used to validate the logistic regression model independently. RESULTS: The logistic regression model accurately predicted the H3 K27-altered status with accuracies of 0.833 and 0.786, sensitivities of 0.813 and 0.750, specificities of 0.857 and 0.833, and areas under the curve of 0.839 and 0.818 in the test and prospective sets, respectively. Sensitivity analysis confirmed the robustness of the model, with predictive accuracies of 0.767-0.833. CONCLUSIONS: Radiomics signatures based on preoperative T2WI could accurately predict the H3 K27-altered status of spinal cord diffuse midline glioma, providing potential benefits for clinical management.


Subject(s)
Glioma , Humans , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Prospective Studies , Retrospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/pathology
4.
Food Sci Nutr ; 11(10): 6459-6469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823169

ABSTRACT

Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.

5.
NMR Biomed ; 36(2): e4845, 2023 02.
Article in English | MEDLINE | ID: mdl-36259659

ABSTRACT

Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Molecular Imaging
6.
Neuroimage Clin ; 37: 103291, 2023.
Article in English | MEDLINE | ID: mdl-36527996

ABSTRACT

BACKGROUND: This study aimed to investigate cerebellar mutism syndrome (CMS)-related voxels and build a voxel-wise predictive model for CMS. METHODS: From July 2013 to January 2022, 188 pediatric patients diagnosed with posterior fossa tumor were included in this study, including 38 from a prospective cohort recruited between 2020 and January 2022, and the remaining from a retrospective cohort recruited in July 2013-Aug 2020. The retrospective cohort was divided into the training and validation sets; the prospective cohort served as a prospective validation set. Voxel-based lesion symptoms were assessed to identify voxels related to CMS, and a predictive model was constructed and tested in the validation and prospective validation sets. RESULTS: No significant differences were detected among these three data sets in CMS rate, gender, age, tumor size, tumor consistency, presence of hydrocephalus and paraventricular edema. Voxels related to CMS were mainly located in bilateral superior and inferior cerebellar peduncles and the superior part of the cerebellum. The areas under the curves for the model in the training, validation and prospective validation sets were 0.889, 0.784 and 0.791, respectively. CONCLUSIONS: Superior and inferior cerebellar peduncles and the superior part of the cerebellum were related to CMS, especially the right side, and voxel-based lesion-symptom analysis could provide valuable predictive information before surgery.


Subject(s)
Brain Neoplasms , Cerebellar Diseases , Cerebellar Neoplasms , Infratentorial Neoplasms , Mutism , Child , Humans , Retrospective Studies , Mutism/diagnostic imaging , Mutism/etiology , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/etiology , Infratentorial Neoplasms/diagnostic imaging , Infratentorial Neoplasms/surgery , Brain Neoplasms/pathology , Cerebellum , Syndrome , Cerebellar Neoplasms/complications , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/surgery
7.
Skeletal Radiol ; 51(6): 1273-1283, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34854969

ABSTRACT

OBJECTIVE: To investigate the feasibility of compressed sensing MRI (CS-MRI) in the application of 2D spinal imaging and compare its performance with conventional MR imaging (non-CS-MRI). METHODS: The CS imaging protocol was optimized on 5 volunteers. Non-CS-MRI and CS-MRI of 2D sagittal T1 weighted imaging (WI), Sag T2WI, and axial T2WI were performed for 71 patients (22 cervical, 8 thoracic, 41 lumbar MRI). Paired t tests were conducted to compare the total scan time. Three radiologists assessed image quality and lesion diagnosis independently. A Kendall W test was performed to assess interobserver agreement of the image quality scores and lesion diagnosis between readers. A nonparametric test (Wilcoxon test) was performed to compare the image quality. For lesion diagnosis, the interobserver and interstudy agreements were evaluated by kappa analysis. Paired t tests were conducted for SNR and CNR comparison. RESULTS: The mean scan time for spine CS-MRI (4 min 28.7 s ± 34.6 s) was significantly shorter than that with non-CS-MRI (7 min 21.3 s ± 38.7 s, t = - 47.464, P < 0.0001). CS-MRI achieved higher SNR and CNR than Non-CS-MRI in image quality assessment. Interobserver agreements of lesion diagnosis were excellent between non-CS-MRI and CS-MRI (kappa value from 0.913 to 1.000, P < 0.001). Interstudy agreements of lesion assessments were also excellent (kappa value = 1.000, with P < 0.001). CONCLUSION: CS-MRI spine imaging can significantly reduce the scan time, while maintaining comparable imaging quality to non-CS-MRI.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pressure , Spine/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...