Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
SLAS Technol ; 29(5): 100176, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151752

ABSTRACT

The objective of the study was to research diagnostic and prognostic values of 18F fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in patients with diffuse large B-cell lymphoma (DLBCL). The diagnostic sensitivity (Sen) of PET/CT (94.75 %) was remarkably higher than 83.56 % of B-US. Age ≥ 65 years old, maximum focal diameter ≥5 cm, clinical stages III-IV, systemic symptoms, increased lactate dehydrogenase level, high modified international prognostic index score, Ecog score ≥1, B-cell lymphoma 2 (Bcl-2) gene, MYC protein expression rate, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were all factors that influenced the recurrence or progression of DLBCL. With higher MTV and TLG, patients would have a greater probability of recurrence or progression. 18F-FDG PET/CT showed a high diagnostic Sen in lymphoma lesions, and could accurately guide clinical staging. Combined with clinical parameters, laboratory indicators, and metabolic parameters, prognostic indicators of patients could be evaluated more accurately.

2.
Nat Commun ; 15(1): 6352, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069525

ABSTRACT

Understanding the variability of extinction risk and its potential drivers across different spatial extents is crucial to revealing the underlying processes of biodiversity loss and sustainability. However, in countries with high climatic and topographic heterogeneity, studies on extinction risk are often challenged by complexities associated with extent effects. Here, using 2.02 million fine-grained distribution records and a phylogeny including 27,185 species, we find that the extinction risk of flowering plants in China is spatially concentrated in southwestern China. Our analyses suggest that spatial extinction risks of flowering plants in China may be caused by multiple drivers and are extent dependent. Vegetation structure based on proportion of growth forms is likely the dominant extinction driver at the national extent, followed by climatic and evolutionary drivers. Finer extent analyses indicate that the potential dominant extinction drivers vary across zones and vegetation regions. Despite regional heterogeneity, we detect a geographical continuity potential in extinction drivers, with variation in West China dominated by vegetation structure, South China by climate, and North China by evolution. Our findings highlight that identification of potential extent-dependent drivers of extinction risk is crucial for targeted conservation practice in countries like China.


Subject(s)
Biodiversity , Extinction, Biological , Magnoliopsida , Phylogeny , China , Magnoliopsida/genetics , Conservation of Natural Resources , Climate , Geography , Biological Evolution
3.
SLAS Technol ; 29(4): 100165, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038788

ABSTRACT

Lymphoma is a malignant tumor originating from the lymphopoietic system, which can affect all tissues and organs of the body. Lymphoma is highly heterogeneous and the therapeutic effect varies greatly. Different pathological types and stages of lymphoma differ greatly in terms of treatment intensity and prognosis. Early diagnosis of lymphoma is very important to improve the prognosis of patients. Therefore, this work explored the diagnostic value of independent and combined detection of computed tomography (CT), ultrasound, and positron emission tomography - computed tomography (PET-CT) for lymphoma. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in the PET-CT and combination groups were greatly higher than those in the CT and ultrasound groups, showing obvious differences (P < 0.05). The area under curve (AUC) values in the CT group, ultrasound group, PET-CT group, and combination group were 0.632 (P = 0.032), 0.614 (P = 0.025), 0.793 (P = 0.002), and 0.859 (P = 0.001), respectively, exhibiting observable differences (P < 0.05). the sensitivity and specificity of PET/CT for lymphoma were higher than those of CT and ultrasound, which can clearly show the early mild results of lymphatic lymphoma. Therefore, the combined diagnosis of lymphatic lymphoma with PET/CT was of high clinical value.

4.
Nat Commun ; 15(1): 5915, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003277

ABSTRACT

GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 µWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.

5.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454027

ABSTRACT

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

6.
Nat Commun ; 14(1): 7428, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973881

ABSTRACT

Mg3(Sb,Bi)2 is a promising thermoelectric material suited for electronic cooling, but there is still room to optimize its low-temperature performance. This work realizes >200% enhancement in room-temperature zT by incorporating metallic inclusions (Nb or Ta) into the Mg3(Sb,Bi)2-based matrix. The electrical conductivity is boosted in the range of 300-450 K, whereas the corresponding Seebeck coefficients remain unchanged, leading to an exceptionally high room-temperature power factor >30 µW cm-1 K-2; such an unusual effect originates mainly from the modified interfacial barriers. The reduced interfacial barriers are conducive to carrier transport at low and high temperatures. Furthermore, benefiting from the reduced lattice thermal conductivity, a record-high average zT > 1.5 and a maximum zT of 2.04 at 798 K are achieved, resulting in a high thermoelectric conversion efficiency of 15%. This work demonstrates an efficient nanocomposite strategy to enhance the wide-temperature-range thermoelectric performance of n-type Mg3(Sb,Bi)2, broadening their potential for practical applications.

7.
BMC Biol ; 21(1): 239, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37904140

ABSTRACT

BACKGROUND: The Sino-Himalayan flora harbors highly diverse high-elevation biotas, but our understanding of its evolutionary history in temporal and spatial dimensions is limited. In this study, we integrated a dated phylogenetic tree with comprehensive species distribution data to investigate changes over time and space in floristic elements, including the tropical, Tethys, northern temperate, and East Asian floristic elements, across the entire Sino-Himalaya and its three floristic regions: the Yunnan Plateau, Hengduan Mountains, and East Himalaya regions. RESULTS: Our results revealed that the Sino-Himalayan flora developed from lowland biomes and was predominantly characterized by tropical floristic elements before the collision between the Indian subcontinent and Eurasia during the Early Cenozoic. Subsequently, from the Late Eocene onwards, the uplifts of the Himalaya and Hengduan Mountains transformed the Sino-Himalayan region into a wet and cold plateau, on which harsh and diverse ecological conditions forced the rapid evolution of local angiosperms, giving birth to characteristic taxa adapted to the high altitudes and cold habitat. The percentage of temperate floristic elements increased and exceeded that of tropical floristic elements by the Late Miocene. CONCLUSIONS: The Sino-Himalayan flora underwent four significant formation periods and experienced a considerable increase in endemic genera and species in the Miocene, which remain crucial to the present-day patterns of plant diversity. Our findings support the view that the Sino-Himalayan flora is relatively young but has ancient origins. The three major shifts in the divergence of genera and species during the four formation periods were primarily influenced by the uplifts of the Himalaya and Hengduan Mountains and the onset and intensification of the Asian monsoon system. Additionally, the temporal patterns of floristic elements differed among the three floristic regions of the Sino-Himalaya, indicating that the uplift of the Himalaya and surrounding areas was asynchronous. Compared to the Yunnan Plateau region, the East Himalaya and Hengduan Mountains experienced more recent and drastic uplifts, resulting in highly intricate topography with diverse habitats that promoted the rapid radiation of endemic genera and species in these regions.


Subject(s)
Biodiversity , Ecosystem , Pregnancy , Humans , Female , Phylogeny , China , Plants
8.
Nanotechnology ; 34(30)2023 May 09.
Article in English | MEDLINE | ID: mdl-37094553

ABSTRACT

SnO2film is one of the most widely used electron transport layers (ETL) in perovskite solar cells (PSCs). However, the inherent surface defect states in SnO2film and mismatch of the energy level alignment with perovskite limit the photovoltaic performance of PSCs. It is of great interesting to modify SnO2ETL with additive, aiming to decrease the surface defect states and obtain well aligned energy level with perovskite. In this paper, anhydrous copper chloride (CuCl2) was employed to modify the SnO2ETL. It is found that the adding of a small amount of CuCl2into the SnO2ETL can improve the proportion of Sn4+in SnO2, passivate oxygen vacancies at the surface of SnO2nanocrystals, improve the hydrophobicity and conductivity of ETL, and obtain a good energy level alignment with perovskite. As a result, both the photoelectric conversion efficiency (PCE) and stability of the PSCs based on SnO2ETLs modified with CuCl2(SnO2-CuCl2) is improved in comparison with that of the PSCs on pristine SnO2ETLs. The optimal PSC based on SnO2-CuCl2ETL exhibits a much higher PCE of 20.31% as compared to the control device (18.15%). The unencapsulated PSCs with CuCl2modification maintain 89.3% of their initial PCE after exposing for 16 d under ambient conditions with a relative humidity of 35%. Cu(NO3)2was also employed to modify the SnO2ETL and achieved a similar effect as that of CuCl2, indicating that the cation Cu2+plays the main role in SnO2ETL modification.

9.
Adv Mater ; 35(23): e2209119, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929018

ABSTRACT

Mg3 (Sb,Bi)2 is a potential nearly-room temperature thermoelectric compound composed of earth-abundant elements. However, complex defect tuning and exceptional microstructural control are required. Prior studies have confirmed the detrimental effect of Mg vacancies (VMg ) in Mg3 (Sb,Bi)2 . This study proposes an approach to mitigating the negative scattering effect of VMg by Bi deficiency, synergistically modulating the electrical and thermal transport properties to enhance the thermoelectric performance. Positron annihilation spectrometry and Cs -corrected scanning transmission electron microscopy analyses indicated that the VMg tends to coalesce due to the introduced Bi vacancies (VBi ). The defects created by Bi deficiency effectively weaken the scattering of electrons from the intrinsic VMg and enhance phonon scattering. A peak zT of 1.82 at 773 K and high conversion efficiency of 11.3% at ∆T = 473 K are achieved in the optimized composition of Mg3 (Sb,Bi)2 by tuning the defect combination. This work demonstrates a feasible and effective approach to improving the performance of Mg3 (Sb,Bi)2 as an emerging thermoelectric material.

10.
J Integr Plant Biol ; 65(5): 1204-1225, 2023 May.
Article in English | MEDLINE | ID: mdl-36738233

ABSTRACT

Orchidaceae (with >28,000 orchid species) are one of the two largest plant families, with economically and ecologically important species, and occupy global and diverse niches with primary distribution in rainforests. Among orchids, 70% grow on other plants as epiphytes; epiphytes contribute up to ~50% of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes, thereby contributing to the health of these ecosystems. Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism. Extensive phylogenetic studies of Orchidaceae and subgroups have ;been crucial for understanding relationships among many orchid lineages, although some uncertainties remain. For example, in the largest subfamily Epidendroideae with nearly all epiphytic orchids, relationships among some tribes and many subtribes are still controversial, hampering evolutionary analyses of epiphytism. Here we obtained 1,450 low-copy nuclear genes from 610 orchid species, including 431 with newly generated transcriptomes, and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes. We also provide generally well-supported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies. Molecular clock analyses estimated the Orchidaceae origin at ~132 million years ago (Ma) and divergences of most subtribes from 52 to 29 Ma. Character reconstruction supports at least 14 parallel origins of epiphytism; one such origin was placed at the most recent common ancestor of ~95% of epiphytic orchids and linked to modern rainforests. Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary, contributing to ~80% of the Orchidaceae diversity. This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in vascular plants.


Subject(s)
Ecosystem , Orchidaceae , Animals , Phylogeny , Orchidaceae/genetics , Plastids
11.
Fundam Res ; 3(6): 939-950, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38933013

ABSTRACT

Establishment of a national park protection system in China, including the latest target proposed to protect at least 30% of the land area, calls for a comprehensive exploration of conservation priorities incorporating multiple diversity facets. We herein evaluate the spatial distribution of Chinese flowering plants from the perspectives of richness, uniqueness, vulnerability, and evolutionary history, by integrating three mega-phylogenies and comprehensive distribution data. We detect significantly high consistency among hotspots of different diversity measures for Chinese flowering plants, suggesting that multiple facets of evolutionary diversity are concentrically distributed in China. Affording legal protection to these areas is expected to maximize positive conservation outcomes. We propose two integrative diversity indices by incorporating three richness-based and three phylogeny-based measures, respectively. Both methods identify areas with high species richness, but the integrative phylogeny-based index also locates key areas with ancient and unique evolutionary histories (e.g., Ailao-Wuliang Mts, Dabie Mts, Hainan rainforest, Karst area of Yunnan-Guizhou-Guangxi, Nanling Mts, and southeast coastal regions). Of all the diversity indices explored, phylogenetic endemism maximizes the incidental protection of other indices in most cases, emphasizing its significance for conservation planning. Finally, 42 priority areas are identified by combining the 5%-criterion hotspots of two integrative indices and the minimum area to protect all threatened species analyzed. These priorities cover only 13.3% of China's land area, but host 97.1% of species richness (23,394/24,095), 96.5% of endemic species (11,841/12,274), 100% of threatened species (2,613/2,613), and 99.3% of phylogenetic diversity for flowering plants involved in this study. These frameworks provide a solid scientific basis for national park planning in China.

12.
Nat Commun ; 13(1): 6087, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36241619

ABSTRACT

GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.

13.
J Phys Condens Matter ; 34(40)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35896095

ABSTRACT

MAPbBr3single crystal (SC) thin layer was successfully grown on MAPbCl3SC substrate to form perovskite SC heterojunction. Planar structure electrodes are deposited by thermal evaporation on the surfaces of MAPbCl3, MAPbBr3, and SCs heterojunction, respectively to evaluate their photoelectric performance. The SC heterojunction device exhibits excellent unidirectional conductivity in the voltage-current curves. Meanwhile, the current-time curves prove that SC heterojunction devices can effectively utilize the advantages of MAPbCl3and MAPbBr3, possessing relatively low dark current (∼300 nA), which is comparable to the dark current of MAPbCl3, but very high photocurrent (∼3500 nA), which is equivalent to the photocurrent of MAPbBr3. Rather than the photocurrent overshot and decay occurring at the exposure of light illumination in the MAPbBr3device, the photocurrent is extremely stable without overshot and decay in the SC heterojunction device. The light-to-dark ratio of the SC heterojunction device is twice that of MAPbCl3device and three times that of MAPbBr3device. Furthermore, the detectivity of the heterojunction device reaches as high as∼7×1011 Jones, an order of magnitude higher than MAPbCl3and MAPbBr3. The excellent characteristics of SC heterojunction further expand the practical application prospect of perovskite materials.

15.
Adv Mater ; 33(43): e2103633, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34494316

ABSTRACT

Pores in a solid can effectively reduce thermal conduction, but they are not favored in thermoelectric materials due to simultaneous deterioration of electrical conductivity. Conceivably, creating a porous structure may endow thermoelectric performance enhancement provided that overwhelming reduction of electrical conductivity can be suppressed. This work demonstrates such an example, in which a porous structure is formed leading to a significant enhancement in the thermoelectric figure of merit (zT). By a unique BiI3 sublimation technique, pore networks can be introduced into tetrahedrite Cu12 Sb4 S13 -based materials, accompanied by changes in their hierarchical structures. The addition of a small quantity of BiI3 (0.7 vol%) results in a ≈72% reduction in the lattice thermal conductivity, whereas the electrical conductivity is improved due to unexpected enhanced carrier mobility. As a result, an enhanced zT of 1.15 at 723 K in porous tetrahedrite and a high conversion efficiency of 6% at ΔT = 419 K in a fabricated segmented single-leg based on this porous material are achieved. This work offers an effective way to concurrently modulate the electrical and thermal properties during the synthesis of high-performance porous thermoelectric materials.

16.
Nanoscale ; 13(38): 16084-16093, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34549749

ABSTRACT

Bio-mass materials have been selected as one of the advanced electromagnetic (EM) functional materials due to their natural porous framework for dynamically and flexibly optimizing the EM response property. Herein, we demonstrate sulfur-doped wood-derived porous carbon EM materials (SPC) for optimizing the EM response performance via the coupling between doped heterostructures and the original 3D microchannels. The experimental results reveal that both the dielectric loss capacity and interfacial impedance matching could be increased by the sulfur-doped heterostructures. By tailoring the sulfur content, the microwave absorption (normalized RLmin) of SPC could be optimized to -15.90 dB mm-1, while the effective absorption bandwidth (EABRL≤-10 dB) could cover the K band. Moreover, the shielding effectiveness of SPC can be enhanced from 10 dB to 30 dB with the assistance of water, ascribed to the super-wettability performance. This present study provides a novel strategy to further optimize the EM response performance of wood-derived materials, and meanwhile could be widely extended to other bio-mass absorbers.

17.
Micromachines (Basel) ; 12(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34442501

ABSTRACT

The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise mitigation technologies have been proposed. However, they only mitigate one of the noises of the NAND flash memory channel. In this paper, we consider all the main noises and present a novel neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we transform the bit detection into a clustering problem and propose to employ a neural network to learn the error characteristics of the NAND flash memory channel. Therefore, the trained neural network has optimized performances of bit error detection. Simulation results show that our proposed scheme can significantly improve the performance of the bit error detection and increase the endurance of NAND flash memory.

18.
Front Psychol ; 12: 644412, 2021.
Article in English | MEDLINE | ID: mdl-34211420

ABSTRACT

Referral reward design is the core component of customer referral programs, which are often applied to recruit new customers. This research investigates the effectiveness of utilitarian vs. hedonic rewards in terms of referral generation. Through one field study and two laboratory studies, we demonstrate a reward-product congruency effect; that is, utilitarian rewards, compared with hedonic rewards, yield a higher referral likelihood for utilitarian products, while the opposite holds true for hedonic products. However, such a congruency effect would be crippled by gender segmentation. When males make referral decisions toward hedonic products, the effectiveness of utilitarian rewards is at least equal to that of hedonic rewards. When females make referral decisions toward utilitarian products, there is no difference in effectiveness between utilitarian and hedonic rewards. These findings provide novel insights into referral reward design.

19.
J Phys Condens Matter ; 33(28)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-33971631

ABSTRACT

High-quality MAPbX3(X= I, Br, Cl) single crystals with a desirable size were grown through an inverse temperature crystallization method. Systematically measurements of current-voltage (I-V) hysteresis show that the hysteresis is strongly dependent on the measuring protocol, including scan rate and light illumination condition, which reveals the competition of three main factors that influence the charge dynamics in different regimes, defect trap, MA+dipoles rotation, and ion migration. In the dark, defect trapping is the dominant charge transport dynamics at low bias in the MAPbI3, while the MA+dipole rotation is significant in MAPbBr3, and ion migration occurs in MAPbCl3. However, as bias increases, MA+dipole rotation plays a crucial role in the conductivity either in the dark or under light illumination. The time-dependent photoresponse exhibits different tendencies under various biases. The slow rising dynamics of photoresponse in MAPbX3is attributed to the slow rotation of MA+dipoles, while an immediate overshoot followed by a decay suggests significant ion migration contribution at high external bias. The results serve as comprehensive experimental support to understand the hysteresis behaviors and slow photoresponse in MAPbX3, particularly in MAPbCl3, and provide a guide for future work in MAPbX3based optoelectronic devices.

20.
Sci Adv ; 7(4)2021 01.
Article in English | MEDLINE | ID: mdl-33523945

ABSTRACT

Genetic diversity and phylogenetic diversity reflect the evolutionary potential and history of species, respectively. However, the levels and spatial patterns of genetic and phylogenetic diversity of wildlife at the regional scale have largely remained unclear. Here, we performed meta-analyses of genetic diversity in Chinese terrestrial vertebrates based on three genetic markers and investigated their phylogenetic diversity based on a dated phylogenetic tree of 2461 species. We detected strong positive spatial correlations among mitochondrial DNA-based genetic diversity, phylogenetic diversity, and species richness. Moreover, the terrestrial vertebrates harbored higher genetic and phylogenetic diversity in South China and Southwest China than in other regions. Last, climatic factors (precipitation and temperature) had significant positive effects while altitude and human population density had significant negative impacts on levels of mitochondrial DNA-based genetic diversity in most cases. Our findings will help guide national-level genetic diversity conservation plans and a post-2020 biodiversity conservation framework.

SELECTION OF CITATIONS
SEARCH DETAIL