Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 132: 111965, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38583242

ABSTRACT

Phosgene is a type of poisonous gas that can cause acute lung injury (ALI) upon accidental exposure. Casualties still occur due to phosgene-induced acute lung injury (P-ALI) from accidents resulting from improper operations. The pathological mechanisms of P-ALI are still understudied. Thus, we performed scRNA-seq on cells isolated from all subpopulations of the BALF in P-ALI and found that Gal3 expression was significantly higher in the gas group than in the control group. Further analysis revealed a ligand-receptor correspondence between alveolar macrophages (AMs) and alveolar epithelial cells (AEC), with Gal3 playing a key role in this interaction. To confirm and elaborate on this discovery, we selected four time points during the previous week: sham (day 0), day 1, day 3, and day 7 in the P-ALI mouse model and found that Gal3 expression was significantly elevated in P-ALI, most abundantly expressed in AM cells. This was further confirmed with the use of a Gal3 inhibitor. The inhibition of Gal3 and elimination of AMs in mice both attenuated epithelial cell pyroptosis, as confirmed in in vitro experiments, and revealed the Gal3/caspase-8/GSDMD signaling pathway. These findings suggest that Galectin-3 inhibition can ameliorate AEC pyroptosis by inhibiting the Gal3/caspase-8/GSDMD signaling pathway, thus reducing alveolar damage in mice with P-ALI. This finding provides novel insights for improving treatment efficacy for P-ALI.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Galectin 3 , Mice, Inbred C57BL , Phosgene , Pyroptosis , Animals , Humans , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Chemical Warfare Agents/toxicity , Disease Models, Animal , Galectin 3/metabolism , Galectin 3/genetics , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Phosgene/toxicity , Pyroptosis/drug effects , Signal Transduction/drug effects
2.
J Inflamm Res ; 16: 2129-2147, 2023.
Article in English | MEDLINE | ID: mdl-37220504

ABSTRACT

Purpose: Chemically induced acute lung injury (CALI) has become a serious health concern in our industrialized world, and abnormal functional alterations of immune cells crucially contribute to severe clinical symptoms. However, the cell heterogeneity and functional phenotypes of respiratory immune characteristics related to CALI remain unclear. Methods: We performed scRNA sequencing on bronchoalveolar lavage fluid (BALF) samples obtained from phosgene-induced CALI rat models and healthy controls. Transcriptional data and TotalSeq technology were used to confirm cell surface markers identifying immune cells in BALF. The landscape of immune cells could elucidate the metabolic remodeling mechanism involved in the progression of acute respiratory distress syndrome and cytokine storms. We used pseudotime inference to build macrophage trajectories and the corresponding model gene expression changes, and identified and characterized alveolar cells and immune subsets that may contribute to CALI pathophysiology based on gene expression profiles at single-cell resolution. Results: The immune environment of cells, including dendritic cells and specific macrophage subclusters, exhibited increased function during the early stage of pulmonary tissue damage. Nine different subpopulations were identified that perform multiple functional roles, including immune responses, pulmonary tissue repair, cellular metabolic cycle, and cholesterol metabolism. Additionally, we found that individual macrophage subpopulations dominate the cell-cell communication landscape. Moreover, pseudo-time trajectory analysis suggested that proliferating macrophage clusters exerted multiple functional roles. Conclusion: Our findings demonstrate that the bronchoalveolar immune microenvironment is a fundamental aspect of the immune response dynamics involved in the pathogenesis and recovery of CALI.

3.
Biomed Pharmacother ; 162: 114654, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37018988

ABSTRACT

Accidental exposure to phosgene can cause acute lung injury (ALI), characterized by uncontrolled inflammation and impaired lung blood-gas barrier. CD34+CD45+ cells with high pituitary tumor transforming gene 1 (PTTG1) expression were identified around rat pulmonary vessels through single-cell RNA sequencing, and have been shown to attenuate P-ALI by promoting lung vascular barrier repair. As a transcription factor closely related to angiogenesis, whether PTTG1 plays a role in CD34+CD45+ cell repairing the pulmonary vascular barrier in rats with P-ALI remains unclear. This study provided compelling evidence that CD34+CD45+ cells possess endothelial differentiation potential. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells transfected with or without PTTG1-overexpressing and sh-PTTG1 lentivirus. It was found that CD34+CD45+ cells reduced the pulmonary vascular permeability and mitigated the lung inflammation, which could be reversed by knocking down PTTG1. Although PTTG1 overexpression enhanced the ability of CD34+CD45+ cells to attenuate P-ALI, no significant difference was found. PTTG1 was found to regulate the endothelial differentiation of CD34+CD45+ cells. In addition, knocking down of PTTG1 significantly reduced the protein levels of VEGF and bFGF, as well as their receptors, which in turn inhibited the activation of the PI3K/AKT/eNOS signaling pathway in CD34+CD45+ cells. Moreover, LY294002 (PI3K inhibitor) treatment inhibited the endothelial differentiation of CD34+CD45+ cells, while SC79 (AKT activator) yielded the opposite effect. These findings suggest that PTTG1 can promote the endothelial differentiation of CD34+CD45+ cells by activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway, leading to the repair of the pulmonary vascular barrier in rats with P-ALI.


Subject(s)
Acute Lung Injury , Phosgene , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Signal Transduction
4.
Nutrients ; 14(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36364706

ABSTRACT

(1) Background: Carbohydrate combined with dietary fiber (DF) applied as a surrogate marker of overall carbohydrate quality is a more essential determinant of cardiometabolic health. However, to date, no studies have applied this metric to analyze its associations with poor blood pressure control in hypertensive patients. (2) Methods: A cross-sectional design was implemented in one tertiary hospital and one community hospital in China. Using Feihua Nutrition Software to analyze participants' two-day dietary log, the quantity of carbohydrate and fiber was obtained and the carbohydrate to fiber ratio (CFR) was calculated. The participants were divided into Q1, Q2, Q3, and Q4 groups by quartile method, from low to high according to CFR. The poor systolic and diastolic blood pressure (SBP and DBP) controls were defined as ≥140 mmHg and ≥90 mmHg, respectively. (3) Results: A convenience sample of 459 participants was included and the mean CFR was 29.6. Taking Q1 as reference, after adjusting for covariates, the CFR in Q4 was associated with higher poor SBP-controlled rate (OR, 4.374; 95% CI, 2.236-8.559). Taking Q2 as reference, after adjusting for covariates, the CFRs in Q3 and Q4 were associated with higher poor DBP-controlled rates [(OR = 1.964, 95% CI: 1.016-3.795) and (OR = 4.219, 95% CI: 2.132-8.637), respectively]. The CFR was the stronger protective determinant of SBP and DBP than DF or carbohydrate alone. (4) Conclusions: A higher CFR is a stronger risk factor for blood pressure (BP) control, and low CFR foods or a combination of corresponding food components, should be recommended in the dietary management of hypertensive patients.


Subject(s)
Dietary Carbohydrates , Hypertension , Humans , Blood Pressure , Essential Hypertension , Cross-Sectional Studies , Dietary Fiber
5.
World J Gastroenterol ; 28(36): 5265-5279, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36185635

ABSTRACT

The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.


Subject(s)
Intestines , Receptors, Purinergic P2X7 , Adenosine Triphosphate , Humans , Inflammation , Intestinal Mucosa
6.
Appl Biochem Biotechnol ; 194(9): 4156-4168, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35666382

ABSTRACT

Intestinal ischemia-reperfusion (II/R) injury is a complex pathologic process, which is of great significance to unravel the underlying mechanisms and pathophysiology. Our study represented a comprehensive proteomic analysis in the human intestine with ischemia-reperfusion injury. The proteomics analysis measured a total of 5,230 proteins, and 417 differently expressed proteins (DEPs) were identified between II/R and control samples. GO and KEGG analysis demonstrated that the 290 upregulated DEPs in II/R were significantly involved in immune-related biological process and tight junction, focal adhesion, and cAMP signaling pathway, whereas the 127 downregulated DEPs in II/R were enriched in lipid metabolic process and metabolic pathway. Furthermore, we screened out 20 hub proteins from the protein-protein interaction (PPI) network according to the degree of connectivity, and six clusters were identified. Combined with the result of KEGG analysis, 6 from the 20 hub proteins, ACTB, CAV1, FLNA, MYLK, ACTN1, and MYL9, were identified as the key proteins in the progress of II/R injury. According to the previous studies, FLNA and MYL9 were selected as the novel disease-related proteins for the first time. In conclusion, this study extended our understanding of the alteration in the human intestine during ischemia and reperfusion and highlighted the potential role of FLNA and MYL9 in the progress of II/R injury, which need to be further studied.


Subject(s)
Proteomics , Reperfusion Injury , Humans , Intestines , Mass Spectrometry , Proteomics/methods , Reperfusion , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
7.
Aging (Albany NY) ; 12(23): 24033-24056, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33221762

ABSTRACT

Sarcopenia is a serious public health problem associated with the loss of muscle mass and function. The purpose of this study was to identify molecular markers and construct a ceRNA pathway as a significant predictor of sarcopenia. We designed a prediction model to select important differentially expressed mRNAs (DEMs), and constructed a sarcopenia associated ceRNA network. After correlation analysis of each element in the ceRNA network based on clinical samples and GTEX database, C2C12 mouse myoblasts were used as a model to verify the identified ceRNA pathways. A new model for predicting sarcopenia based on four molecular markers SEPP1, SV2A, GOT1, and GFOD1 was developed. The model was used to construct a ceRNA network and showed high accuracy. Correlation analysis showed that the expression levels of lncDLEU2, SEPP1, and miR-181a were closely associated with a high risk of sarcopenia. lncDLEU2 inhibits muscle differentiation and regeneration by acting as a miR-181a sponge regulating SEPP1 expression. In this study, a highly accurate prediction tool was developed to improve the prediction outcomes of sarcopenia. These findings suggest that the lncDLEU2-miR-181a-SEPP1 pathway inhibits muscle differentiation and regeneration. This pathway may be a new therapeutic target for the treatment of sarcopenia.


Subject(s)
Cell Differentiation , MicroRNAs/metabolism , Muscle Development , Muscle, Skeletal/metabolism , RNA, Long Noncoding/metabolism , Regeneration , Sarcopenia/metabolism , Selenoprotein P/metabolism , Aged , Aged, 80 and over , Animals , Cell Line , Databases, Genetic , Female , Gene Regulatory Networks , Humans , Male , Mice , MicroRNAs/genetics , Middle Aged , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , RNA, Long Noncoding/genetics , Sarcopenia/genetics , Sarcopenia/pathology , Sarcopenia/physiopathology , Selenoprotein P/genetics , Signal Transduction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...