Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.753
Filter
1.
Foot Ankle Surg ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38760281

ABSTRACT

BACKGROUND: The study was to establish a novel classification of the morphological characteristics of fibula anterior-inferior margin (FAIM), which was reported in few studies. METHODS: The 501 images with three-dimensional computed tomography (3D CT) reconstruction were reviewed retrospectively. The width, height, thickness, long axis, short axis, and lateral malleolus angle were measured. RESULTS: The FAIM was divided into Angular, Flat, and Arc. The Flat has no distinct fibular obscure tubercles (FOT). The short axis of Angular and Arc were more significant than the Flat (P < 0. 05). The height of left was larger than the right, but short axis was less than it (P < 0.05). The height and short axis of males were larger than the females (P < 0.05). CONCLUSIONS: A novel classification (the Angular, Flat and Arc) of FAIM was identified based on lateral malleolus morphology, and it suggested that not all have obvious FOT. LEVEL OF EVIDENCE: Level Ⅲ, retrospective study.

2.
Front Neurol ; 15: 1374159, 2024.
Article in English | MEDLINE | ID: mdl-38721117

ABSTRACT

Background: Evidence of the relationship between platelet count and 30-day in-hospital mortality in ICU stroke patients is still scarce. Therefore, the purpose of this study was to explore the relationship between platelet count and 30-day in-hospital mortality among ICU stroke patients. Methods: We conducted a multicenter retrospective cohort study using data from 8,029 ICU stroke patients in the US eICU-CRD v2.0 database from 2014 to 2015. Utilizing binary logistic regression, smooth curve fitting, and subgroup analyses, we examined the link between platelet count and 30-day in-hospital mortality. Results: The 30-day in-hospital mortality prevalence was 14.02%, and the mean platelet count of 223 × 109/L. Adjusting for covariates, our findings revealed an inverse association between platelet count and 30-day in-hospital mortality (OR = 0.975, 95% CI: 0.966, 0.984). Subgroup analyses supported the robustness of these results. Moreover, a nonlinear relationship was observed between platelet count and 30-day in-hospital mortality, with the inflection point at 163 × 109/L. On the left side of the inflection point, the effect size (OR) was 0.92 (0.89, 0.95), while on the right side, the relationship was not statistically significant. Conclusion: This study establishes an independent negative association between platelet count and 30-day in-hospital mortality in ICU stroke patients. Furthermore, a nonlinear relationship with a saturation effect was identified, suggesting that maintaining the platelet count around 163 × 109/L can reduce 30-day in-hospital mortality in these patients.

3.
J Alzheimers Dis ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728186

ABSTRACT

Background: Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score serves as a credible predictor of an individual's risk of dementia. However, studies on the link of the CAIDE score to Alzheimer's disease (AD) pathology are scarce. Objective: To explore the links of CAIDE score to cerebrospinal fluid (CSF) biomarkers of AD as well as to cognitive performance. Methods: In the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, we recruited 600 cognitively normal participants. Correlations between the CAIDE score and CSF biomarkers of AD as well as cognitive performance were probed through multiple linear regression models. Whether the correlation between CAIDE score and cognitive performance was mediated by AD pathology was researched by means of mediation analyses. Results: Linear regression analyses illustrated that CAIDE score was positively associated with tau-related biomarkers, including pTau (p <  0.001), tTau (p <  0.001), as well as tTau/Aß42 (p = 0.008), while it was in negative association with cognitive scores, consisting of MMSE score (p <  0.001) as well as MoCA score (p <  0.001). The correlation from CAIDE score to cognitive scores was in part mediated by tau pathology, with a mediation rate varying from 3.2% to 13.2% . Conclusions: A higher CAIDE score, as demonstrated in our study, was linked to more severe tau pathology and poorer cognitive performance, and tau pathology mediated the link of CAIDE score to cognitive performance. Increased dementia risk will lead to cognitive decline through aggravating neurodegeneration.

4.
Cytotherapy ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38739075

ABSTRACT

Advanced therapy medicinal products (ATMPs) are rapidly evolving to offer new treatment options. The scientific, technical, and clinical complexities subject drug regulatory authorizes to regulatory challenges. To advance the regulatory capacity for ATMPs, the National Medical Products Administration in China made changes to the drug regulatory system and developed regulatory science with the goal of addressing patient needs and encouraging innovation. This study aimed to systematically identify the regulatory evidence on ATMPs in China under the guidance of an overarching framework from the World Health Organization Global Benchmarking Tool. It was found that China's administrative authorities at all levels have issued a number of policy documents to promote the development of ATMPs, covering biopharmaceutical products research and development (n = 14), biopharmaceutical industry development (n = 9), high-quality development of medical institutions (n = 1), specific development plans/projects (n = 6) and specific regional development (n = 4). The legal and regulatory framework of ATMPs in China has been established and is subject to continuous adjustment in various aspects including regulations (n = 3), departmental rules or administrative normative documents (n = 22), and technical guidance (n = 15). As the regulatory reform continues, the drug review processes have been revised, and various technical standards have been launched, which aim to establish a regulatory approach that oversees the full life-cycle development of ATMPs in the country. The limited number of investigational new drug applications and approved ATMPs suggests a lag remains between the translation of advanced therapeutic technologies into clinically available medical products. To accelerate the translational research of ATMP in countries such as China, developing and adopting real-world evidence generated from clinical use in designated healthcare facilities to support scientific decision-making in ATMP regulation is warranted. The enhancement of regulatory capacity building and multi-stakeholder collaborations should also be encouraged to facilitate the timely evaluation of promising ATMPs to meet more patient needs.

5.
iScience ; 27(5): 109748, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706838

ABSTRACT

We previously reported that loss of function of TYW1 led to cerebral palsy with severe intellectual disability through reduced neural proliferation. However, whether TYW1 loss affects neural differentiation is unknown. In this study, we first demonstrated that TYW1 loss blocked the formation of OHyW in tRNAphe and therefore affected the translation efficiency of UUU codon. Using the brain organoid model, we showed impaired neuron differentiation when TYW1 was depleted. Interestingly, retrotransposons were differentially regulated in TYW1-/- hESCs (human embryonic stem cells). In particular, one kind of human-specific endogenous retrovirus-K (HERVK/HML2), whose reactivation impaired human neurodevelopment, was significantly up-regulated in TYW1-/- hESCs. Consistently, a UUU codon-enriched protein, SMARCAD1, which was a key factor in controlling endogenous retroviruses, was reduced. Taken together, TYW1 loss leads to up-regulation of HERVK in hESCs by down-regulated SMARCAD1, thus impairing neuron differentiation.

6.
Front Plant Sci ; 15: 1373669, 2024.
Article in English | MEDLINE | ID: mdl-38711605

ABSTRACT

(E)-ß-Farnesene (EBF) serves as the primary component of the alarm pheromone used by most aphid pest species. Pyrethrum (Tanacetum cinerariifolium) exhibits tissue-specific regulation of EBF accumulation and release, effectively mimicking the aphid alarm signal, deterring aphid attacks while attracting aphid predators. However, cultivated chrysanthemum (Chrysanthemum morifolium), a popular and economically significant flower, is highly vulnerable to aphid infestations. In this study, we investigated the high expression of the pyrethrum EBF synthase (TcEbFS) gene promoter in the flower head and stem, particularly in the parenchyma cells. Subsequently, we introduced the TcEbFS gene, under the control of its native promoter, into cultivated chrysanthemum. This genetic modification led to increased EBF accumulation in the flower stem and young flower bud, which are the most susceptible tissues to aphid attacks. Analysis revealed that aphids feeding on transgenic chrysanthemum exhibited prolonged probing times and extended salivation durations during the phloem phase, indicating that EBF in the cortex cells hindered their host-location behavior. Interestingly, the heightened emission of EBF was only observed in transgenic chrysanthemum flowers after mechanical damage. Furthermore, we explored the potential of this transgenic chrysanthemum for aphid resistance by comparing the spatial distribution and storage of terpene volatiles in different organs and tissues of pyrethrum and chrysanthemum. This study provides valuable insights into future trials aiming for a more accurate replication of alarm pheromone release in plants. It highlights the complexities of utilizing EBF for aphid resistance in cultivated chrysanthemum and calls for further investigations to enhance our understanding of this defense mechanism.

8.
Nanoscale ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717507

ABSTRACT

Intravesical instillation is the common therapeutic strategy for bladder cancer. Besides chemo drugs, nanoparticles are used as intravesical instillation reagents, offering appealing therapeutic approaches for bladder cancer treatment. Metal oxide nanoparticle based chemodynamic therapy (CDT) converts tumor intracellular hydrogen peroxide to ROS with cancer cell-specific toxicity, which makes it a promising approach for the intravesical instillation of bladder cancer. However, the limited penetration of nanoparticle based therapeutic agents into the mucosa layer of the bladder wall poses a great challenge for the clinical application of CDT in intravesical instillation. Herein, we developed a 1064 nm NIR-II light driven hydrogel nanomotor for the CDT for bladder cancer via intravesical instillation. The hydrogel nanomotor was synthesized via microfluidics, wrapped with a lipid bilayer, and encapsulates CuO2 nanoparticles as a CDT reagent and core-shell structured Fe3O4@Cu9S8 nanoparticles as a fuel reagent with asymmetric distribution in the nanomotor (LipGel-NM). An NIR-II light irradiation of 1064 nm drives the active motion of LipGel-NMs, thus facilitating their distribution in the bladder and deep penetration into the mucosa layer of the bladder wall. After FA-mediated endocytosis in bladder cancer cells, CuO2 is released from LipGel-NMs due to the acidic intracellular environment for CDT. The NIR-II light powered active motion of LipGel-NMs effectively enhances CDT, providing a promising strategy for bladder cancer therapy.

9.
Adv Sci (Weinh) ; : e2400011, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698560

ABSTRACT

DNA is commonly employed as a substrate for the building of artificial logic networks due to its excellent biocompatibility and programmability. Till now, DNA logic circuits are rapidly evolving to accomplish advanced operations. Nonetheless, nowadays, most DNA circuits remain to be disposable and lack of field programmability and thereby limits their practicability. Herein, inspired by the Configurable Logic Block (CLB), the CLB-based erasable field-programmable DNA circuit that uses clip strands as its operation-controlling signals is presented. It enables users to realize diverse functions with limited hardware. CLB-based basic logic gates (OR and AND) are first constructed and demonstrated their erasability and field programmability. Furthermore, by adding the appropriate operation-controlling strands, multiple rounds of programming are achieved among five different logic operations on a two-layer circuit. Subsequently, a circuit is successfully built to implement two fundamental binary calculators: half-adder and half-subtractor, proving that the design can imitate silicon-based binary circuits. Finally, a comprehensive CLB-based circuit is built that enables multiple rounds of switch among seven different logic operations including half-adding and half-subtracting. Overall, the CLB-based erasable field-programmable circuit immensely enhances their practicability. It is believed that design can be widely used in DNA logic networks due to its efficiency and convenience.

10.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
11.
Immunity ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38754432

ABSTRACT

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.

12.
Plant Physiol Biochem ; 212: 108715, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38761541

ABSTRACT

Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 µmol m-2 s-1) and high (HL; 300 µmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.

13.
Adv Sci (Weinh) ; : e2400594, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689503

ABSTRACT

Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.

14.
Sci Total Environ ; 933: 173125, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734095

ABSTRACT

The abuse of antibiotics has caused the accumulation of antibiotic residues in environmental media, threatening the ecosystem and human health. Many studies on the distribution of aqueous antibiotics have been reported. However, the pollution status of antibiotics in the environment in Chinese herbal medicine planting areas is rarely comprehensively clarified, resulting in the lack of updated pollution data and conducive suggestions for ecological cultivation and sustainable development of Chinese herbal medicine. Thus, we comprehensively investigated the distribution, profiles, sources, and risks of the antibiotics in the surface water of an important tributary of the Huaihe River Basin, located in Bozhou City, a significant Chinese herbal medicine planting region. Solid-phase extraction coupled with an ultra-performance liquid chromatography-tandem mass spectrometer (SPE-UPLC-MS) was utilized to detect the antibiotics in the water. 27 kinds of antibiotics were identified with total concentrations ranging from 75.01 to 1737.99 ng·L-1, with doxycycline (DC) and doxycycline hydrochloride (DCH) possessed the highest concentration. And DC, DCH, oxilinic acid (OA), sulfamethoxazole (SMZ), clarithromycin (CLA), and roxithromycinum (ROX) were the main antibiotics detected in this basin. Correlation analysis and principal component analysis (PCA) indicated that animal husbandry was the primary source of antibiotics. Furthermore, the ecological risk assessment revealed that certain antibiotics could seriously threaten the survival of aquatic organisms, implying that local Chinese herbal medicines might be at similar growth risk. The drinking risk assessment showed that antibiotics in the water posed low risks for human, and children faced a greater drinking risk than adults. The study can help to facilitate the management of aqueous antibiotic pollution for the ecological cultivation and safe production of Chinese herbal medicine.

15.
Front Bioeng Biotechnol ; 12: 1395731, 2024.
Article in English | MEDLINE | ID: mdl-38742205

ABSTRACT

Purpose: Early gastrointestinal tumors can be removed by endoscopic procedures. Endoscopic mucosal dissection (ESD) requires submucosal fluid injection to provide mucosal elevation and prevent intraoperative perforation. However, the clinically applied normal saline mucosal elevation height is low for a short time, which often requires multiple intraoperative injections that increase the inconvenience and procedure time. In addition, recently researched submucosal injection materials (SIM) suffer from complex preparation, poor economy, and poor biocompatibility. Therefore, there is an urgent need for a new type of SIM that can provide long, safe and effective mucosal elevation in support of the endoscopic procedures. Methods: The FS hydrogel is based on polyethylene-polypropylene glycol (F-127) mixed with sodium alginate (SA). The different physicochemical properties of FS hydrogels were characterized through various experiments. Afterward, various biosafety assessments were carried out. Finally, the performance of FS hydrogels was evaluated by in vitro submucosal injection and in vivo swine ESD. Results: The experimental results show that the FS hydrogel is liquid at room temperature, making it easy to inject, and when injected under the mucosa, it undergoes temperature-induced cross-linking, transforming from a liquid to a solid state to provide long-lasting mucosal augmentation. At the same time, the FS hydrogel exhibits controllable gelation, stability, and biocompatibility. The results of in vitro submucosal injections and in vivo ESD procedures showed that FS achieves high mucosal augmentation and provides good submucosal cushioning in the long term. Conclusion: In summary, the F-127/SA hydrogel is simple to synthesize, cost-effective, safe, easy to store, and able to assist ESD well from the perspective of practical clinical problems, indicating that the FS hydrogel can be an ideal potent submucosal injection substitution.

16.
Opt Lett ; 49(10): 2661-2664, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748130

ABSTRACT

Wireless data traffic is expected to exponentially increase in the future, and meeting this demand will require high data rate photonic-wireless links operating in the W-band (75-110 GHz). For this purpose, pulse-amplitude-modulation with four levels (PAM-4)-based intensity modulation and direct detection (IM-DD) photonic-wireless systems are preferred due to their simplified configuration. In this Letter, we present an experimental demonstration of an IM-DD PAM-4 photonic-wireless link in the W-band, leveraging a monolithic dual-laser photonic chip to enhance integration. Through injection-locking by an optical comb, the chip generates a W-band wireless signal via photo-mixing with a photodiode. This comb injection approach facilitates the phase correlation of the chip's two modes, resulting in a stabilized beat note. Additionally, the on-chip integration of the dual lasers enables the modulation of the two modes with a single modulator, improving the signal-to-noise ratio (SNR) while eliminating the need for extra splitters or combiners. Meanwhile, the envelope detector (ED) plays a crucial role in the simplified configuration, contributing to the overall decrease in size, weight, power, and complexity of the system. The integration of the chip-based phase-locked light source and the utilization of the ED thus signify noteworthy features of our experimental setup, which functions without the necessity of both optical and electrical local oscillators. PAM-4 signal modulation is simultaneously applied to the two coherent optical carriers. Our experiments have effectively transmitted 5 and 10 Gbaud PAM-4 W-band wireless signals in a cost-effective, lightweight, and straightforward configuration, achieving a line data rate of up to 20 Gbit/s economically. These experimental results demonstrate the practical potential of implementing fully integrated photonic-wireless transmitters.

17.
Med ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38608708

ABSTRACT

BACKGROUND: Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS: We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS: The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS: The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING: This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.

18.
Cancer Med ; 13(7): e7092, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581123

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Subject(s)
Helicobacter pylori , Stomach Neoplasms , Animals , Mice , Helicobacter pylori/physiology , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Mice, Nude , Chromatography, Liquid , Cell Line, Tumor , Tandem Mass Spectrometry , Wnt Signaling Pathway , Stomach Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Cell Proliferation
19.
Expert Rev Anticancer Ther ; : 1-10, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38656796

ABSTRACT

BACKGROUND: Adjuvant therapy (AT) and neoadjuvant therapy (NAT) are standard treatments for pancreatic ductal adenocarcinoma (PDAC) depending on the status of the disease. However, whether AT improves survival after NAT and radical resection in all TNM stages remains unclear. RESEARCH DESIGN AND METHODS: We utilized the Surveillance, Epidemiology, and End Results (SEER) database (2010-2019) for PDAC patients who underwent radical surgery and applied Pearson's chi-square test, multivariate and univariate Cox regression, Kaplan-Meier plot, Log-rank tests, and propensity score matching (PSM) for analysis. RESULTS: Given PSM after enrolling 13,868 PDAC patients, significant differences in survival were identified between AT and neoadjuvant therapy plus adjuvant therapy (NATAT) (p = 0.023) as well as between NAT and NATAT (p < 0.001). According to the AJCC 8th TNM stage, a survival advantage associated with NATAT was exclusively observed in stage III and IV disease, except for T4N0M0. Some stage IV patients receiving NATAT exhibited comparable survival to their counterparts without metastasis. CONCLUSIONS: In this retrospective cohort study, we demonstrated that patients harboring tumors in late TNM stages, including N2 resectable PDAC, might have better survival from NATAT, and that certain patients with M1 disease might still benefit from comprehensive systemic therapy and radical resection.

20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 519-525, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684294

ABSTRACT

OBJECTIVE: To carry out cytogenetic and molecular genetic analysis for two infertile patients carrying rare small supernumerary marker chromosomes (sSMC). METHODS: Two infertile patients who received reproductive and genetic counseling at CITIC Xiangya Reproductive and Genetic Hospital on October 31, 2018 and May 10, 2021, respectively were selected as the study subjects. The origin of sSMCs was determined by conventional G banding, fluorescence in situ hybridization (FISH) and copy number variation sequencing (CNV-seq). Microdissection combined with high-throughput whole genome sequencing (MicroSeq) was carried out to determine the fragment size and genomic information of their sSMCs. RESULTS: For patient 1, G-banded karyotyping and FISH revealed that he has a karyotype of mos47,XY,del(16)(p10p12),+mar[65]/46,XY,del(16)(p10p12)[6]/48,XY,del(16)(p10p12),+2mar[3].ish mar(Tel 16p-,Tel 16q-,CEP 16-,WCP 16+). CNV analysis has yielded a result of arr[GRCh37]16p12.1p11.2(24999364_33597595)×1[0.25]. MicroSeq revealed that his sSMC has contained the region of chromosome 16 between 24979733 and 34023115 (GRCh37). For patient 2, karyotyping and reverse FISH revealed that she has a karyotype of mos 47,XX,+mar[37]/46,XX[23].rev ish CEN5, and CNV analysis has yielded a result of seq[GRCh37]dup(5)(p12q11.2)chr5:g(45120001_56000000)dup[0.8]. MicroSeq results revealed that her sSMC has contained the region of chromosome 5 between 45132364 and 55967870(GRCh37). After genetic counseling, both couples had opted in vitro fertilization (IVF) treatment and preimplantation genetic testing (PGT). CONCLUSION: For individuals harboring sSMCs, it is vital to delineate the origin and structural characteristics of the sSMCs for their genetic counseling and reproductive guidance. Preimplantation genetic testing after microdissection combined with high-throughput whole genome sequencing (MicroSeq-PGT) can provide an alternative treatment for carrier couples with a high genetic risk.


Subject(s)
In Situ Hybridization, Fluorescence , Karyotyping , Humans , Male , Female , Adult , Chromosome Aberrations , Genetic Testing/methods , Reproductive Techniques, Assisted , DNA Copy Number Variations , Infertility/genetics , Genetic Markers , Chromosome Banding , Genetic Counseling
SELECTION OF CITATIONS
SEARCH DETAIL
...