Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2411957, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39380380

ABSTRACT

The emerging non-fullerene acceptors with low voltage losses have pushed the power conversion efficiency of organic solar cells (OSCs) to ≈20% with auxiliary morphology optimization. Thermal annealing (TA), as the most widely adopted post-treatment method, has been playing an essential role in realizing the potential of various material systems. However, the procedure of TA, i.e., the way that TA is performed, is almost identical among thousands of OSC papers since ≈30 years ago other than changes in temperature and annealing time. Herein, a reverse thermal annealing (RTA) technique is developed, which can enhance the dielectric constant of active layer film, thereby producing a smaller Coulomb capture radius (14.93 nm), meanwhile, forming a moderate nano-scale phase aggregation and a more favorable face-on molecular stacking orientation. Thus, this method can reduce the decline in open circuit voltage of the conventional TA method by achieving decreased radiative (0.334 eV) and non-radiative (0.215 eV) recombination loss. The power conversion efficiency of the RTA PM6:L8-BO-X device increases to 19.91% (certified 19.42%) compared to the TA device (18.98%). It is shown that this method exhibits a superb universality in 4 other material systems, revealing its dramatic potential to be employed in a wide range of OSCs.

2.
ACS Nano ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377210

ABSTRACT

To meet the demand for longer driving ranges and shorter charging times of power equipment in electric vehicles, engineering fast-charging batteries with exceptional capacity and extended lifespan is highly desired. In this work, we have developed a stable ultrafast-charging and high-energy-density all-nanofibrous covalent organic framework (COF) battery (ANCB) by designing a series of imine-based nanofibrous COFs for the cathode, separator, and anode by Schiff-base reactions. Hierarchical porous structures enabled by nanofibrous COFs were constructed for enhanced kinetics. Rational chemical structures have been designed for the cathode, separator, and anode materials, respectively. A nanofibrous COF (AA-COF) with bipolarization active sites and a wider layer spacing has been designed using a triphenylamine group for the cathode to achieve high voltage limits with fast mass transport. For the anode, a nanofibrous COF (TT-COF) with abundant polar groups, active sites, and homogenized Li+ flux based on imine, triazine, and benzene has been synthesized to ensure stable fast-charging performance. As for the separator, a COF-based electrospun polyacrylonitrile (PAN) composite nanofibrous separator (BB-COF/PAN) with hierarchical pores and high-temperature stability has been prepared to take up more electrolyte, promote mass transport, and enable as high-temperature operation as possible. The as-assembled ANCB delivers a high energy density of 517 Wh kg-1, a high power density of 9771 W kg-1 with only 56 s of ultrafast-charging time, and high-temperature operational potential, accompanied by a 0.56% capacity fading rate per cycle at 5 A g-1 and 100 °C. This ANCB features an ultralong lifespan and distinguished ultrafast-charging performance, making it a promising candidate for powering equipment in electric vehicles.

3.
Chem Commun (Camb) ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39390959

ABSTRACT

Three non-fullerene acceptors (NFAs) with varying alkyl chain sizes and lengths but constant fluorine atoms were synthesized. BO-17F and HD-17F, with optimal fluorination, exhibit improved molecular packing and morphology, achieving efficiencies of 14.2% and 14.4%. This work highlights the importance of fine-tuning alkyl chains and fluorination levels in organic solar cells.

4.
Angew Chem Int Ed Engl ; : e202412903, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264260

ABSTRACT

The difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs). Herein, we synthesized two ffBT-based copolymers, PffBT-2T and PffBT-4T, incorporating different π-bridges to modulate intermolecular interactions and aggregation tendencies. Experimental and theoretical studies revealed that PffBT-4T exhibits reduced electrostatic potential differences and miscibility with L8-BO compared to PffBT-2T. This facilitates improved phase separation in the active layer, leading to enhanced molecular packing and optimized morphology. Moreover, PffBT-4T demonstrated a prolonged nucleation and crystal growth process, leading to enhanced molecular packing and optimized morphology. Consequently, PffBT-4T-based devices achieved a remarkable PCE of 17.5%, setting a new record for ffBT-based photovoltaic polymers. Our findings underscore the importance of conjugate backbone modulation in controlling aggregation behavior and film formation kinetics, providing valuable insights for the design of high-performance polymer donors in organic photovoltaics.

5.
Adv Mater ; 36(35): e2407609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875710

ABSTRACT

Current high-efficiency organic solar cells (OSCs) are generally fabricated in an inert atmosphere that limits their real-world scalable manufacturing, while the efficiencies of air-processed OSCs lag far behind. The impacts of ambient factors on solar cell fabrication remain unclear. In this work, the effects of ambient factors on cell fabrication are systematically investigated, and it is unveiled that the oxidation and doping of organic light absorbers are the dominant reasons causing cell degradation when fabricated in air. To address this issue, a new strategy for fabricating high-performance air-processed OSCs by introducing an antioxidant additive (4-bromophenylhydrazine, BPH) into the precursor solutions, is developed. BPH can effectively inhibit oxygen infiltration from the ambient to the photoactive layer and suppress trap formation caused by oxidation. Compared with conventional air-processed OSCs, this strategy remarkably increases the cell power conversion efficiency (PCE) from 16.7% to 19.3% (independently certified as 19.2%), representing the top value of air-processed OSCs. Furthermore, BPH significantly improves the operational stability of the cells in air by two times with a T80 lifetime of over 500 h. This study highlights the potential of using antioxidant additives to fabricate high-efficiency and stable OSCs in air, significantly promoting the industrialization of OSCs.

6.
ACS Appl Mater Interfaces ; 16(26): 33928-33934, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38889386

ABSTRACT

Nonfused ring electron acceptors (NFREAs) have emerged as promising materials for commercial applications in organic solar cells due to their straightforward synthesis process and cost-effectiveness. The rational design of their structural frameworks is crucial for enhancing device efficiency. In this study, we explore the use of maleimide and thiophene as key building blocks, employing cyclization engineering techniques. Additionally, cyclopentanedithiophene was chosen as the bridging unit, coupled with fluorinated terminals, to fabricate NFREAs, namely, PI-DTS and DPI-DTS. DPI-DTS demonstrated superior molecular planarity and an upshifted lowest unoccupied molecular orbital energy level. Moreover, DPI-DTS-based blend films display enhanced π-π interactions and crystallinity, alongside a predominantly face-on orientation. Consequently, DPI-DTS-based devices displayed enhanced and more balanced carrier mobility, reduced bimolecular recombination, and trap-assisted recombination, leading to improved charge transfer efficiency. Ultimately, this led to an excellent efficiency of 10.48%, with an open-circuit voltage as high as 0.914 V. These findings highlight the significant promise of aromatic imides in constructing NFREAs, and the established structure-performance relationship provides a theoretical basis for the design of high performance NFREAs.

7.
Adv Mater ; 36(32): e2405404, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804577

ABSTRACT

Indoor photovoltaics (IPVs) are garnering increasing attention from both the academic and industrial communities due to the pressing demand of the ecosystem of Internet-of-Things. All-polymer solar cells (all-PSCs), emerging as a sub-type of organic photovoltaics, with the merits of great film-forming properties, remarkable morphological and light stability, hold great promise to simultaneously achieve high efficiency and long-term operation in IPV's application. However, the dearth of polymer acceptors with medium-bandgap has impeded the rapid development of indoor all-PSCs. Herein, a highly efficient medium-bandgap polymer acceptor (PYFO-V) is reported through the synergistic effects of side chain engineering and linkage modulation and applied for indoor all-PSCs operation. As a result, the PM6:PYFO-V-based indoor all-PSC yields the highest efficiency of 27.1% under LED light condition, marking the highest value for reported binary indoor all-PSCs to date. More importantly, the blade-coated devices using non-halogenated solvent (o-xylene) maintain an efficiency of over 23%, demonstrating the potential for industry-scale fabrication. This work not only highlights the importance of fine-tuning intramolecular charge transfer effect and intrachain coplanarity in developing high-performance medium-bandgap polymer acceptors but also provides a highly efficient strategy for indoor all-PSC application.

8.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38329002

ABSTRACT

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

9.
Adv Mater ; 36(21): e2312473, 2024 May.
Article in English | MEDLINE | ID: mdl-38385598

ABSTRACT

Organic ion-gated transistors (OIGTs) demonstrate commendable performance for versatile neuromorphic systems. However, due to the fragility of organic materials to organic solvents, efficient and reliable all-photolithography methods for scalable manufacturing of high-density OIGT arrays with multimode neuromorphic functions are still missing, especially when all active layers are patterned in high-density. Here, a flexible high-density (9662 devices per cm2) OIGT array with high yield and minimal device-to-device variation is fabricated by a modified all-photolithography method. The unencapsulated flexible array can withstand 1000 times' bending at a radius of 1 mm, and 3 months' storage test in air, without obvious performance degradation. More interesting, the OIGTs can be configured between volatile and nonvolatile modes, suitable for constructing reservoir computing systems to achieve high accuracy in classifying handwritten digits with low training costs. This work proposes a promising design of organic and flexible electronics for affordable neuromorphic systems, encompassing both array and algorithm aspects.

10.
Adv Mater ; 36(16): e2305755, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227620

ABSTRACT

Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.

11.
Nat Commun ; 14(1): 6964, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907534

ABSTRACT

High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.

12.
ACS Appl Mater Interfaces ; 15(38): 45158-45166, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37708412

ABSTRACT

Modification of the molecular packing of nonfullerene acceptors through fluorination represents one of the most promising strategies to achieve highly efficient organic solar cells (OSCs). In this work, three nonfused electron acceptors, namely, DTCBT-Fx (x = 0, 5, 9) with precisely controlled amounts of fluorine atoms in the side chains are designed and synthesized, and the effect of side chain fluorination is systematically studied. The results demonstrate that the light absorption, energy levels, molecular ordering, and film morphology could be effectively tuned by precisely controlling the side chain fluorination. DTCBT-F5 with an appropriate fluorine functionalization exhibits suitable miscibility with the donor polymer (PM6), leading to diminished charge recombination and improved charge carrier mobility. Consequently, a promising power conversion efficiency of 12.7% was obtained for DTCBT-F5-based solar cells, which outperforms those OSCs based on DTCBT-F0 (11.4%) and DTCBT-F9 (11.6%), respectively. This work demonstrates that precise control of the fluorine functionalization in side chains of nonfused electron acceptors is an effective strategy for realizing highly efficient OSCs.

13.
Angew Chem Int Ed Engl ; 62(35): e202304931, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37431837

ABSTRACT

Reducing non-radiative recombination energy loss (ΔE3 ) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3 , the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π-π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3 . This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.

14.
Nat Commun ; 14(1): 4488, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495580

ABSTRACT

Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.


Subject(s)
Wearable Electronic Devices , Humans , Electronics , Elastic Modulus
15.
Adv Mater ; 35(26): e2301231, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044383

ABSTRACT

Currently, nearly all high-efficiency organic photovoltaic devices use donor polymers based on the benzo-dithiophene (BDT) unit. To diversify the choices of building blocks for high-performance donor polymers, the use of benzo-difuran (BDF) units is explored, which can achieve reduced steric hindrance, stronger molecular packing, and tunable energy levels. In previous research, the performance of BDF-based devices lagged behind those of BDT-based devices. In this study, a high efficiency (18.4%) is achieved using a BDF-based polymer donor, which is the highest efficiency reported for BDF donor materials to date. The high efficiency is enabled by a donor polymer (D18-Fu) and the aid of a solid additive (2-chloronaphthalene), which is the isomer of the commonly used additive 1-chloronaphthalene. These results revealed the significant effect of 2-chloronaphthalene in optimizing the morphology and enhancing the device parameters. This work not only provides a new building block that can achieve an efficiency comparable to dominant BDT units but also proposes a new solid additive that can replace the widely used 1-chloronaphthalene additive.

16.
Angew Chem Int Ed Engl ; 61(46): e202206930, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36125387

ABSTRACT

Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the π-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.

17.
Front Plant Sci ; 13: 948189, 2022.
Article in English | MEDLINE | ID: mdl-36160966

ABSTRACT

Predicting the potential influences of climate change on the richness and distribution is essential for the protection of endangered species. Most orchid species are narrowly distributed in specific habitats and are very vulnerable to habitat disturbance, especially for endangered orchid species on the Qinghai-Tibetan Plateau (QTP). In this study, we simulated the potential influences of climate change on the richness and distribution of 17 endangered orchid species on the QTP using the MaxEnt model based on the shared socioeconomic pathways scenarios (SSPs) in the 2050s and 2070s. The results showed that aspect, annual precipitation, elevation, mean temperature of driest quarter, topsoil pH (H2O), and topsoil sand fraction had a large influence on the potential distribution of endangered orchid species on the QTP. The area of potential distribution for orchid species richness ranging from 6 to 11 under the current climate scenario was 14,462 km2 (accounting for 0.56% of QTP), and it was mostly distributed in the southeastern part of QTP. The area of orchid species richness ranging from 6 to 11 under SSP370 in the 2070s was the smallest (9,370 km2: only accounting for 0.36% of QTP). The largest area of potential distribution for orchid species richness ranging from 6 to 11 was 45,394 km2 (accounting for 1.77% of QTP) under SSP585 in the 2070s. The total potential distribution area of 17 orchid species richness all increased from the 2050s to the 2070s under SSP126, SSP245, SSP370, and SSP585. The orchid species richness basically declined with the increasing elevation under current and future climate scenarios. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 under different climate scenarios was between 3,267 and 3,463 m. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 decreased from SSP126 (3,457 m) to SSP585 (3,267 m) in the 2070s. Based on these findings, future conservation plans should be concentrated on the selection of protected areas in the southeastern part of QTP to protect the endangered orchid species.

18.
Adv Mater ; 34(23): e2201178, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35448913

ABSTRACT

Organic electrochemical transistors (OECTs) represent an emerging device platform for next-generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, but they have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state-of-the-art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side-chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm-1 ) and biaxial stretchability up to 100% strain. Furthermore, on-skin electrocardiogram (ECG) recording is demonstrated, which combines built-in amplification and unprecedented skin conformability.


Subject(s)
Polymers , Transistors, Electronic , Electronics , Oxidation-Reduction , Polymers/chemistry , Skin
19.
Nat Mater ; 20(4): 525-532, 2021 04.
Article in English | MEDLINE | ID: mdl-33432145

ABSTRACT

Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy Ea scales linearly with the enthalpic interaction parameters χH between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in Ea to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.


Subject(s)
Electric Power Supplies , Organic Chemicals/chemistry , Sunlight , Diffusion , Kinetics , Models, Chemical , Polymers/chemistry , Thermodynamics
20.
Adv Mater ; 32(49): e2005348, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33150638

ABSTRACT

With power conversion efficiency now over 17%, a long operational lifetime is essential for the successful application of organic solar cells. However, most non-fullerene acceptors can crystallize and destroy devices, yet the fundamental underlying thermodynamic and kinetic aspects of acceptor crystallization have received limited attention. Here, room-temperature (RT) diffusion coefficients of 3.4 × 10-23 and 2.0 × 10-22 are measured for ITIC-2Cl and ITIC-2F, two state-of-the-art non-fullerene acceptors. The low coefficients are enough to provide for kinetic stabilization of the morphology against demixing at RT. Additionally profound differences in crystallization characteristics are discovered between ITIC-2F and ITIC-2Cl. The differences as observed by secondary-ion mass spectrometry, differential scanning calorimetry (DSC), grazing-incidence wide-angle X-ray scattering, and microscopy can be related directly to device degradation and are attributed to the significantly different nucleation and growth rates, with a difference in the growth rate of a factor of 12 at RT. ITIC-4F and ITIC-4Cl exhibit similar characteristics. The results reveal the importance of diffusion coefficients and melting enthalpies in controlling the growth rates, and that differences in halogenation can drastically change crystallization kinetics and device stability. It is furthermore delineated how low nucleation density and large growth rates can be inferred from DSC and microscopy experiments which could be used to guide molecular design for stability.

SELECTION OF CITATIONS
SEARCH DETAIL