Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Carcinog ; 63(8): 1486-1499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780182

ABSTRACT

Lactate dehydrogenase A (LDHA) is known to promote the growth and invasion of various types of tumors, affects tumor resistance, and is associated with tumor immune escape. But how LDHA reshapes the tumor microenvironment and promotes the progression of renal cell carcinoma (RCC) remains unclear. In this study, we found that LDHA was highly expressed in clear cell RCC (ccRCC), and this high expression was associated with macrophage infiltration, while macrophages were highly infiltrated in ccRCC, affecting patient prognosis via M2-type polarization. Our in vivo and in vitro experiments demonstrated that LDHA and M2-type macrophages could enhance the proliferation, invasion, and migration abilities of ccRCC cells. Mechanistically, high expression of LDHA in ccRCC cells upregulated the expression of EPHA2 in exosomes derived from renal cancer. Exosomal EPHA2 promoted M2-type polarization of macrophages by promoting activation of the PI3K/AKT/mTOR pathway in macrophages, thereby promoting the progression of ccRCC. All these findings suggest that EPHA2 may prove to be a potential therapeutic target for advanced RCC.


Subject(s)
Carcinoma, Renal Cell , Disease Progression , Exosomes , Kidney Neoplasms , Macrophages , Receptor, EphA2 , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Exosomes/metabolism , Animals , Macrophages/metabolism , Macrophages/pathology , Mice , Cell Line, Tumor , Cell Proliferation , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , Male , Tumor Microenvironment , Prognosis , TOR Serine-Threonine Kinases/metabolism , Female , Signal Transduction , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL