Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Nutr ; 10: 1161537, 2023.
Article in English | MEDLINE | ID: mdl-37377484

ABSTRACT

Non-alcoholic fatty acid liver disease (NAFLD) is a reputed global health concern, affecting children and young adults. Accumulating evidence suggests that edible fungi polysaccharides have the potential to relieve NAFLD. Our previous study found that Auricularia cornea var. Li. polysaccharides (ACP) could improve immune by regulating gut microbiota. However, its NAFLD-alleviating potentials have been scarcely reported. This study analyzed the protective effects of Auricularia cornea var. Li. polysaccharides on high-fat diet (HFD)-induced NAFLD and mechanistic actions. We first analyzed the histology and hepatic lipid profile of animals to evaluate this variant's ameliorating effects on NAFLD. Then, antioxidant and anti-inflammatory potentials of ACP were studied. Finally, we explored changes in the gut microbiome diversity for mechanistic insights from the gut-liver region. Results showed that supplementation with ACP substantially reduced homeostasis model assessment-insulin resistance (HOMA-IR), body fat, liver index rates and weight gain (p < 0.05). This variant also improved HDL-C levels while decreasing triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels which were initially triggered by HFD. ACP mediation also decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels considerably with H&E technique indicating that it can reduce liver lipid accumulation, thus lowering liver damages risks (p < 0.05). The antioxidant potentials of ACP were also demonstrated as it decreased the hepatic levels of malondialdehyde (MDA) and increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). Proinflammatory markers like IL-6, IL-1ß and TNF-α concentrations were decreased by ACP supplementation, accompanied with increased IL-4 levels. Finally, ACP supplementation regulated the intestinal microbiota to near normal patterns. In all, ACP protects HFD-induced NAFLD by improving liver characteristics and regulating colonic flora composition, our findings assert that ACP can be a promising strategy in NAFLD therapy.

2.
Elife ; 122023 05 11.
Article in English | MEDLINE | ID: mdl-37166108

ABSTRACT

African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.


Subject(s)
Trypanosoma , Trypanosoma/cytology , Trypanosoma/growth & development , Trypanosoma/metabolism , Single-Cell Gene Expression Analysis , Cryopreservation , RNA, Protozoan/analysis , Protozoan Proteins/analysis
3.
Mol Biotechnol ; 62(10): 521-533, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32840729

ABSTRACT

Bacillus amyloliquefaciens TF28 can be used to control soybean root disease. To assess its commercial potential as a biocontrol agent, it is necessary to develop a strain-specific quantification method to monitor its colonization dynamics in the rhizospheric soil of soybean under field conditions. Based on genomic comparison with the same species in NCBI databases, a strain-unique gene ukfpg was used as molecular marker to develop strain-specific PCR assay. Among three primer pairs, only primer pairs (F2/R2) could specifically differentiate TF28 from other strains of B. amyloliquefaciens with the detection limit of 10 fg and 100 CFU/g for DNA extracted from pure culture and dry soil, respectively. Then, a colony count coupled with PCR assay was used to monitor the population of TF28 in the rhizospheric soil of soybean in the field. The results indicated that TF28 successfully colonized in the rhizospheric soil of soybean. The colonization population of TF28 changed dynamically within the 120-day growth period with high population at the branching (V6) and flowering stages (R2). This study provides an efficient method to quantitatively monitor the colonization dynamics of TF28 in the rhizospheric soil of soybean in the field and demonstrates the potential of TF28 as a biocontrol agent for commercial development.


Subject(s)
Bacillus amyloliquefaciens/physiology , Glycine max/microbiology , Rhizosphere , Soil Microbiology , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/growth & development , Base Sequence , Colony Count, Microbial , DNA Primers/metabolism , Sequence Homology, Nucleic Acid , Glycine max/growth & development
4.
Exp Ther Med ; 13(2): 461-466, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28352316

ABSTRACT

Cancer-induced bone pain can severely compromise the life quality of patients, while tolerance limits the use of opioids in the treatment of cancer pain. Monocyte chemoattractant protein-1 (MCP-1) is known to contribute to neuropathic pain. However, the role of spinal MCP-1 in the development of morphine tolerance in patients with cancer-induced bone pain remains unclear. The aim of the present study was to investigate the role of spinal MCP-1 in morphine tolerance in bone cancer pain rats (MTBP rats). Bone cancer pain was induced by intramedullary injection of Walker 256 cells into the tibia of the rats, while morphine tolerance was induced by continuous intrathecal injection of morphine over a period of 9 days. In addition, anti-MCP-1 antibodies were intrathecally injected to rats in various groups in order to investigate the association of MCP-1 with mechanical and heat hyperalgesia using the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) tests, respectively. Furthermore, MCP-1 and CCR2 expression levels were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, and CCR2 expression levels were measured using RT-qPCR. The results indicated that MCP-1 and CCR2 expression levels were significantly increased in the spinal cord of MTBP rats. Intrathecal administration of anti-MCP-1 neutralizing antibodies was observed to attenuate the mechanical and thermal allodynia in MTBP rats. Therefore, the upregulation of spinal MCP-1 and CCR2 expression levels may contribute to the development of mechanical allodynia in MTBP rats. In conclusion, MCP-1/CCR2 signaling may serve a crucial role in morphine tolerance development in rats suffering from cancer-induced bone pain.

5.
Stand Genomic Sci ; 11: 73, 2016.
Article in English | MEDLINE | ID: mdl-27688836

ABSTRACT

Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.

6.
Pediatr Cardiol ; 37(4): 629-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26717909

ABSTRACT

Congenital heart disease (CHD) is the leading cause of death in infants in the world. The study of CHDs has come a long way since their classification and description. Although transcriptional programmes that are impaired in individuals with CHDs are being identified, the mechanisms of how these deficiencies translate to a structural defect are unknown. In this study, using high-throughput microarray analysis and molecular network analysis, FXN was identified to be the most differentially expressed key gene in CHD. By TargetScan analysis, we predicted FXN was the target gene of miRNA-145 and miRNA-182. Through real-time PCR analysis of clinical samples and experiments in cell lines, we confirmed that miRNA-145 but not miRNA-182 directly binds to the 3' UTR region of FXN and negatively regulates its expression. We further found that through targeting FXN, miRNA-145 regulates apoptosis and mitochondrial function. In general, our study confirmed the differentially expressed FXN regulates the development of CHD and the differential expression was under the control of miRNA-145. These results might provide new insight into the understanding of the CHD pathogenesis and may facilitate further therapeutic studies.


Subject(s)
3' Untranslated Regions/genetics , Heart Defects, Congenital/genetics , Iron-Binding Proteins/genetics , MicroRNAs/genetics , Case-Control Studies , Child , Child, Preschool , China , Female , Gene Regulatory Networks , Humans , Male , Microarray Analysis , Frataxin
7.
Brain Res ; 1599: 158-67, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25555372

ABSTRACT

Accumulating evidence suggests that chemokine monocyte chemoattractant protein-1 (MCP-1) is significantly involved in the activation of spinal microglia associated with pathological pain, at the same time that the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) pathway localized in spinal microglia is involved in both neuropathic and inflammatory pain. However, whether there is a connection between MCP-1 and the PI3K/Akt pathway and in their underlying mechanisms in bone cancer pain (BCP) has not yet been elucidated. In the current study, we investigated the expression changes of p-Akt in microglia and OX-42 (microglia marker) after being stimulated with MCP-1 in vitro, as well as in a BCP model that was established by an intramedullary injection of mammary gland carcinoma cells(Walker 256 cells) into the tibia of rats. We observed a significant increase in expression levels of p-Akt and OX-42 in microglia as well as in spinal dorsal horns of BCP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody or PI3K inhibitor LY294002 reduced the expression of p-Akt or OX-42, and LY294002 attenuated the mechanical allodynia of BCP rats. These results suggest that MCP-1 may stimulate spinal microglia via the PI3K/Akt pathway in BCP.


Subject(s)
Bone Neoplasms/physiopathology , Chemokine CCL2/metabolism , Microglia/physiology , Pain/physiopathology , Posterior Horn Cells/physiology , Animals , Bone Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/physiopathology , Cell Line, Tumor , Chemokine CCL2/antagonists & inhibitors , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Female , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Microglia/drug effects , Microglia/pathology , Morpholines/pharmacology , Neoplasm Transplantation , Pain/drug therapy , Pain/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Posterior Horn Cells/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Tibia
8.
Biomed Res Int ; 2015: 245412, 2015.
Article in English | MEDLINE | ID: mdl-26844226

ABSTRACT

Cardiovascular and cerebrovascular ischemic disease is a large class of diseases that is harmful to human health. The primary treatment for the ischemic disease is to recover the blood perfusion and relieve the tissue hypoxia and the shortage of the nutrients in the supply of nutrients. In recent years, investigations found that IGF-1 has a protective effect on cardiovascular disease, especially in myocardial ischemia-reperfusion injury. Investigation into molecular mechanism of ischemia-reperfusion injury may offer potential targets for the development of novel diagnostic strategies. In this study we defined IGF-1 was differentially expressed in the I/R model of the Mus musculus and IGF-1 was the target gene of miR-29a and Let7f. After ischemia-reperfusion, the expression of miR-29a and Let7f increased, while the expression of IGF-1 decreased significantly in the animal model assay. Further studies have found that IGF-1 could inhibit cell apoptosis signaling pathway, thus protecting the reperfusion injury. These results provide new understanding of ischemia-reperfusion injury, with the hope of offering theoretical support for future therapeutic studies.


Subject(s)
Apoptosis , Gene Expression Regulation , Insulin-Like Growth Factor I/metabolism , MicroRNAs/metabolism , Myocardial Reperfusion Injury/metabolism , Animals , Humans , Mice , Myocardial Reperfusion Injury/pathology
9.
Eur J Med Res ; 19: 57, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25338953

ABSTRACT

BACKGROUND: Cardiomyopathy is a progressive myocardial disorder. Here, we attempted to reveal the possible mechanism of cardiomyopathy at the transcription level with the roles of microRNAs (miRNAs) and transcription factors (TFs) taken into account. METHOD: We firstly identified differentially expressed genes (DEGs) between cardiomyopathy patients and controls with data from the gene expression omnibus (GEO) database. DEGs were associated with the canonical pathways, molecular and cellular functions, physiological system development and function in the Ingenuity Knowledge Base by using the Ingenuity Pathway Analysis (IPA) software. TFs and miRNAs that DEGs significantly enriched were identified and a double-factor regulatory network was constructed. RESULTS: A total of 1,680 DEGs were identified. The DEGs were enriched for various pathways, with glucocorticoid receptor signaling as the most significant. A double-factor regulatory network was constructed, including seven TFs and two miRNAs. A subnetwork under the regulation of MEF2C and SRF was also constructed to illustrate their regulatory effects on cardiac functions. CONCLUSION: Our results may provide new understanding of cardiomyopathy and may facilitate further therapeutic studies.


Subject(s)
Cardiomyopathies/metabolism , Gene Expression/physiology , Gene Regulatory Networks , MicroRNAs/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Cardiomyopathies/genetics , Humans , Signal Transduction/physiology
10.
J Biomed Sci ; 21: 7, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24456003

ABSTRACT

BACKGROUND: The occurrence of Congenital Heart Disease (CHD) is resulted from either genetic or environmental factors or the both. The CITED2 gene deletion or mutation is associated with the development of cardiac malformations. In this study, we have investigated the role of CITED2 gene mutation and methylation in the development of Congenital Heart Disease in pediatric patients in China. RESULTS: We have screened 120 pediatric patients with congenital heart disease. Among these patients, 4 cases were detected to carry various CITED2 gene heterozygous mutations (c.550G > A, c.574A > G, c.573-578del6) leading correspondingly to the alterations of amino acid sequences in Gly184Ser, Ser192Gly, and Ser192fs, respectively. No CITED2 gene mutations were detected in the control group. At the same time, we found that CITED2 mutations could inhibit TFAP2c expression. In addition, we have demonstrated that abnormal CITED2 gene methylation was detected in most of the tested pediatric patients with CHD, which leads to a decrease of CITED2 transcription activities. CONCLUSIONS: Our study suggests that CITED2 gene mutations and methylation may play an important role in the development of pediatric congenital heart disease.


Subject(s)
DNA Methylation/genetics , Heart Defects, Congenital/genetics , Repressor Proteins/genetics , Trans-Activators/genetics , Adolescent , Child , Child, Preschool , DNA-Binding Proteins/genetics , Female , Heart Defects, Congenital/physiopathology , Humans , Infant , Male , Mutation
11.
Brain Res ; 1509: 1-7, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23511129

ABSTRACT

Accumulating evidence suggests that chemokine C-C motif receptor 2 (CCR2) plays an important role in neuropathic pain. It has been shown that spinal CCR2 is upregulated in several neuropathic pain models and expressed by neuronal and glial cells in the spinal cord. In this study, we investigated the expression changes and cellular localization of spinal CCR2 in a rat model of bone cancer induced by Walker 256 cell inoculation. The present results indicated that mechanical allodynia progressively increased in bone cancer pain (BCP) rats. Western blot and immunohistochemical analysis demonstrated that the expression of CCR2 in the spinal cord was significantly increased on day 6, 12, and 18 in BCP rats, with a peak on day 6. Furthermore, double immunofluorescence labeling indicated that CCR2 was expressed by both microglia and neurons in the spinal cord. These results suggest that CCR2 may be involved in the development of BCP, and that targeting CCR2 may be a new strategy for the treatment of BCP.


Subject(s)
Bone Neoplasms/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Receptors, CCR2/metabolism , Spinal Cord/metabolism , Animals , Bone Neoplasms/complications , Disease Models, Animal , Female , Hyperalgesia/etiology , Microglia/metabolism , Neuralgia/etiology , Neurons/metabolism , Pain Measurement , Pain Threshold/physiology , Physical Stimulation , Rats , Rats, Sprague-Dawley
12.
Brain Res ; 1465: 1-9, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22613229

ABSTRACT

Previous studies have demonstrated that fractalkine, a newly discovered chemokine, is implicated in spinal cord neuron-to-microglia activation signaling as well as mediation of neuropathic and inflammatory pain via its sole receptor CX3CR1, which is specifically expressed on microglia. However, whether it is involved in bone cancer pain (BCP) and the underlying mechanisms have not been elucidated. In this study we utilized a Sprague-Dawley rat animal model, and our findings indicated that on day 6, 12, and 18 following bone cancer pain induced by Walker 256 cell inoculation, the expression level of CX3CR1 in the spinal cord gradually increased. Intrathecal injection of a neutralizing antibody against CX3CR1 not only delayed the initiation of mechanical allodynia, but also attenuated established pain sensitization of BCP rats. Furthermore, we demonstrated that blockade of CX3CR1 suppressed the activation of microglia and the expression of p38 mitogen-activated protein kinase (MAPK) in the spinal cord in BCP rats. These results suggest a new mechanism of BCP, in which the microglia CX3CR1/p38 signaling cascade potentially plays an important role in facilitating pain processing in BCP rats.


Subject(s)
Bone Neoplasms/complications , Chronic Pain/metabolism , Hyperalgesia/metabolism , MAP Kinase Signaling System/physiology , Microglia , Receptors, Chemokine/physiology , Spinal Cord/physiology , p38 Mitogen-Activated Protein Kinases/physiology , Animals , Bone Neoplasms/enzymology , Bone Neoplasms/pathology , CX3C Chemokine Receptor 1 , Chronic Pain/etiology , Chronic Pain/pathology , Disease Models, Animal , Female , Hyperalgesia/etiology , Microglia/enzymology , Microglia/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology
13.
Neurosci Lett ; 517(1): 60-3, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22531750

ABSTRACT

In this study, we examined the involvement of chemokine monocyte chemoattractant protein-1 (MCP-1) in the spinal cord of a rat model of cancer-induced bone pain (CIBP). In this model, CIBP was established by an intramedullary injection of Walker 256 cells into the tibia of rats. We observed a significant increase in expression levels of MCP-1 and its receptor CCR2 in the spinal cord of CIBP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody attenuated the mechanical allodynia established in CIBP rats. Likewise, an intrathecal injection of exogenous recombinant MCP-1 induced a striking mechanical allodynia in naïve rats. These results suggest that increases in spinal MCP-1 and CCR2 expression are involved in the development of mechanical allodynia associated with bone cancer rats.


Subject(s)
Bone Neoplasms/metabolism , Chemokine CCL2/metabolism , Pain/metabolism , Animals , Bone Neoplasms/secondary , Chemokine CCL2/genetics , Chemokine CCL2/pharmacology , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Hyperalgesia/complications , Hyperalgesia/therapy , Injections, Spinal , Pain/etiology , Rats , Rats, Sprague-Dawley , Receptors, CCR2/metabolism , Spinal Cord/metabolism
14.
Arthropod Struct Dev ; 40(5): 420-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21889404

ABSTRACT

The glomerular organization of the primary olfactory brain center, the antennal lobe, was studied in males and females of Holotrichia diomphalia adults using serial histological sections labeled by the reduced silver-stain technique. The results revealed an apparent sexual dimorphism. Whereas an enlarged cap-shaped glomerulus was found at the antennal nerve entrance into the antennal lobe in males, no such unit was present in females. Also the size of the antennal lobe differed between the sexes, the antennal lobe of males being larger than that of females. We estimated the total number of glomeruli at approximately 60 units in the female antennal lobe. In males, we could discriminate only those glomeruli that were located in the anterior area of the antennal lobe.


Subject(s)
Brain/anatomy & histology , Coleoptera/anatomy & histology , Sex Characteristics , Animals , Female , Male , Olfactory Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...