Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 196: 113089, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35074605

ABSTRACT

Phytochemical investigation on the aerial parts of Tabernaemontana bufalina Lour. (Apocynaceae) led to the identification of four undescribed monoterpenoid indole alkaloids named taberbufamines A-D, an undescribed natural product, and fourteen known indole alkaloids. The structures of the undescribed alkaloids were established by spectroscopic and computational methods, and their absolute configurations were further determined by quantum chemical TDDFT calculations and the experimental ECD spectra. Taberbufamines A and B possessed an uncommon skeleton incorporating an indolizidino [8,7-b]indole motif with a 2-hydroxymethyl-butyl group attached at the pyrrolidine ring. Biosynthetically, Taberbufamines A and B might be derived from iboga-type alkaloid through rearrangement. Vobatensine C showed significant bioactivity against A-549, Bel-7402, and HCT-116 cells with IC50 values of 2.61, 1.19, and 1.74 µM, respectively. Ervahanine A showed antimicrobial activity against Bacillus subtilis, Mycobacterium smegmatis, and Helicobacter pylori with MIC values of 4, 8, and 16 µg/mL, respectively. 19(S)-hydroxyibogamine was shown as butyrylcholinesterase inhibitor (IC50 of 20.06 µM) and α-glycosidase inhibitor (IC50 of 17.18 µM), while tabernamine, ervahanine B, and ervadivaricatine B only showed α-glycosidase inhibitory activities with IC50 values in the range of 0.95-4.61 µM.


Subject(s)
Secologanin Tryptamine Alkaloids , Tabernaemontana , Butyrylcholinesterase , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Molecular Structure , Secologanin Tryptamine Alkaloids/pharmacology , Tabernaemontana/chemistry
2.
Front Physiol ; 12: 662666, 2021.
Article in English | MEDLINE | ID: mdl-34262471

ABSTRACT

OBJECTIVE: The aim of this study was to explore the protective effects and the regulatory mechanisms of bariatric surgery on kidney injury in diabetic rats. METHODS: We established a useful type 2 diabetic rat model using high-fat and high-sugar diet feeding following low-dose streptozotocin (STZ) treatment. Sprague-Dawley (SD) rats were randomly divided into the following groups: control (Con) group, diabetic nephropathy (DN) group, and duodenal-jejunal bypass (DJB) surgery group. The food intake and body weight of rats were monitored and the glucose tolerance test (OGTT) test was performed every 2 weeks. The glomerular filtration rate (GFR) and urinary albumin excretion rate (UAFR) were measured to assess renal function. Hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson staining were used to evaluate renal histopathological changes. TUNEL assay was performed to detect cell apoptosis. The expressions of oxidative stress factors and inflammatory factors in the renal tissues of rats were detected by ELISA. The expressions of PPARα, reactive oxygen species (ROS), and NF-κB were detected by immunofluorescence. For in vitro experiment, HK2 cells cultured with high glucose were treated with PPARα agonist, PPARα antagonist, and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) agonist. The expressions of AMPK/PPARα/NF-κB signaling pathway-related proteins were detected by Western blot. RESULTS: Bariatric surgery improved the glucose tolerance of DN rats. The GFR was decreased, the promotion of urinary albumin excretion rate (UAER) was inhibited, and the renal injury was alleviated. The extracellular matrix fraction was decreased and the renal function was improved. Meanwhile, bariatric surgery activates PPARα, inhibits ROS release, reduces oxidative stress injury, and reduces renal cell apoptosis. In vitro experiment results showed that the AMPK activator could activate PPARα, downregulate NF-κB, and inhibit inflammatory response. The phosphorylation of AMPK was inhibited by PPARα antagonism. CONCLUSION: Bariatric surgery can activate PPARα, inhibit oxidative stress injury, and improve glucose metabolism and renal function in DN rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...