Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(33): e2301382, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086113

ABSTRACT

Thermal properties strongly affect the applications of functional materials, such as thermal management, thermal barrier coatings, and thermoelectrics. Thermoelectric (TE) materials must have a low lattice thermal conductivity to maintain a temperature gradient to generate the voltage. Traditional strategies for minimizing the lattice thermal conductivity mainly rely on introduced multiscale defects to suppress the propagation of phonons. Here, the origin of the anomalously low lattice thermal conductivity is uncovered in Cd-alloyed Mg3 Sb2 Zintl compounds through complementary bonding analysis. First, the weakened chemical bonds and the lattice instability induced by the antibonding states of 5p-4d levels between Sb and Cd triggered giant anharmonicity and consequently increased the phonon scattering. Moreover, the bond heterogeneity also augmented Umklapp phonon scatterings. Second, the weakened bonds and heavy element alloying softened the phonon mode and significantly decreased the group velocity. Thus, an ultralow lattice thermal conductivity of ≈0.33 W m-1 K-1 at 773 K is obtained, which is even lower than the predicated minimum value. Eventually, Na0.01 Mg1.7 Cd1.25 Sb2 displays a high ZT of ≈0.76 at 773 K, competitive with most of the reported values. Based on the complementary bonding analysis, the work provides new means to control thermal transport properties through balancing the lattice stability and instability.

2.
Research (Wash D C) ; 2022: 9842949, 2022.
Article in English | MEDLINE | ID: mdl-35582692

ABSTRACT

Environmentally friendly Mg3Sb2-based materials have drawn intensive attention owing to their promising thermoelectric performance. In this work, the electrical properties of p-type Mg3Sb2 are dramatically optimized by the regulation of Mg deficiency. Then, we, for the first time, found that Zn substitution at the Mg2 site leads to the alignment of p x,y and p z orbital, resulting in a high band degeneracy and the dramatically enhanced Seebeck coefficient, demonstrated by the DFT calculations and electronic properties measurement. Moreover, Zn alloying decreases Mg1 (Zn) vacancies formation energy and in turn increases Mg (Zn) vacancies and optimizes the carrier concentration. Simultaneously, the Mg/Zn substitutions, Mg vacancies, and porosity structure suppress the phonon transport in a broader frequency range, leading to a low lattice thermal conductivity of ~0.47 W m-1 K-1 at 773 K. Finally, a high ZT of ~0.87 at 773 K was obtained for Mg1.95Na0.01Zn1Sb2, exceeding most of the previously reported p-type Mg3Sb2 compounds. Our results further demonstrate the promising prospects of p-type Mg3Sb2-based material in the field of mid-temperature heat recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...