Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 6(12): 5836-5841, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38018082

ABSTRACT

The design of self-assembling biomaterials needs to take into consideration the timing and location of the self-assembly process. In recent decades, the principal strategy has been to control the peptide self-assembly under specific conditions to enable its functional performance. However, few studies have explored the responsive elimination of functional self-assembled peptide hydrogels after their function has been performed. We designed peptide ECAFF (ECF-5), which under reductive conditions can self-assemble into a hydrogel. Upon exposure to oxidizing conditions, disulfide bonds form between the peptides, altering their molecular structure and impacting their self-assembly capability. As a result, the peptide hydrogels transition to a soluble state. This study investigates the utilization of oxidation to induce a gel-to-solution transition in peptide hydrogels and provides an explanation for their degradation following free radical treatment. Self-assembled peptide hydrogel materials can be designed from a fresh perspective by considering the degradation that takes place after functional execution.


Subject(s)
Hydrogels , Peptides , Hydrogels/chemistry , Peptides/chemistry , Biocompatible Materials/chemistry , Oxidation-Reduction , Sulfhydryl Compounds , Oxidative Stress
2.
Sensors (Basel) ; 22(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684651

ABSTRACT

To achieve multi-gas measurements of quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors under a frequency-division multiplexing mode with a narrow modulation frequency interval, we report a frequency-domain detection method. A CH4 absorption line at 1653.72 nm and a CO2 absorption line at 2004.02 nm were investigated in this experiment. A modulation frequency interval of as narrow as 0.6 Hz for CH4 and CO2 detection was achieved. Frequency-domain 2f signals were obtained with a resolution of 0.125 Hz using a real-time frequency analyzer. With the multiple linear regressions of the frequency-domain 2f signals of various gas mixtures, small deviations within 2.5% and good linear relationships for gas detection were observed under the frequency-division multiplexing mode. Detection limits of 0.6 ppm for CH4 and 2.9 ppm for CO2 were simultaneously obtained. With the 0.6-Hz interval, the amplitudes of QEPAS signals will increase substantially since the modulation frequencies are closer to the resonant frequency of a QTF. Furthermore, the frequency-domain detection method with a narrow interval can realize precise gas measurements of more species with more lasers operating under the frequency-division multiplexing mode. Additionally, this method, with a narrow interval of modulation frequencies, can also realize frequency-division multiplexing detection for QEPAS sensors under low pressure despite the ultra-narrow bandwidth of the QTF.

3.
Sensors (Basel) ; 21(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34640756

ABSTRACT

Research on carbon dioxide (CO2) geological and biogeochemical cycles in the ocean is important to support the geoscience study. Continuous in-situ measurement of dissolved CO2 is critically needed. However, the time and spatial resolution are being restricted due to the challenges of very high submarine pressure and quite low efficiency in water-gas separation, which, therefore, are emerging the main barriers to deep sea investigation. We develop a fiber-integrated sensor based on cavity ring-down spectroscopy for in-situ CO2 measurement. Furthermore, a fast concentration retrieval model using exponential fit is proposed at non-equilibrium condition. The in-situ dissolved CO2 measurement achieves 10 times faster than conventional methods, where an equilibrium condition is needed. As a proof of principle, near-coast in-situ CO2 measurement was implemented in Sanya City, Haina, China, obtaining an effective dissolved CO2 concentration of ~950 ppm. The experimental results prove the feasibly for fast dissolved gas measurement, which would benefit the ocean investigation with more detailed scientific data.

4.
Sensors (Basel) ; 21(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34372464

ABSTRACT

We have developed a rapid quartz enhanced spectrophone for carbon dioxide (CO2) measurement, in which the laser wavelength was tightly locked to a CO2 absorption line and a custom quartz tuning fork (QTF) operating at 12.5 kHz was employed. The intrinsic QTF oscillation-limited response time, as well as the optimal feedback interval, was experimentally investigated. By tightly locking the laser to the R(16) transition of CO2, we obtained a stable laser operation with its center wavelength variation kept within 0.0002 cm-1, merely three times the laser linewidth. The reported CO2 sensor achieved a detection limit of 7 ppm, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 4.7 × 10-9 W·cm-1·Hz-1/2, at a response time of 0.5 s. The detection limit can be further improved to 0.45 ppm at an integration time of 270 s, illustrating a good system stability. This spectrophone enables the realization of compact and fast-response gas sensors for many scenarios, where CO2 concentration from sub-ppm to hundreds of thousands of ppm is expected.

5.
Opt Express ; 29(2): 2003-2013, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726402

ABSTRACT

We have developed a portable near-infrared laser heterodyne radiometer (LHR) for quasi-simultaneous measurements of atmospheric carbon dioxide (CO2), methane (CH4), water vapor (H2O) and oxygen (O2) column absorption by using three distributed-feedback diode lasers as the local oscillators of the heterodyne detection. The developed system shows good performance in terms of its high spectral resolution of 0.066 cm-1 and a low solar power detection noise which was about 2 times the theoretical quantum limit. Its measurement precision of the column-averaged mole fraction for CO2 and CH4 is within 1.1%, based on the standard deviation from the mean value of the retrieved results for a clean sky. The column abundance information of the O2 is used to correct for the variations and uncertainties of atmosphere pressure, the solar altitude angle, and the prior profiles of pressure and temperature. Comparison measurements of daily column-averaged atmospheric mole fractions of CO2, CH4 and H2O, between our developed LHR and a greenhouse gas observing satellite, show a good agreement, which proves the reliability of our developed system.

6.
Sensors (Basel) ; 21(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557382

ABSTRACT

By combining frequency-division multiplexing and normalized wavelength modulation spectroscopy, a robust remote multi-species sensor was developed and demonstrated for practical hydrocarbon monitoring. Independently modulated laser beams are combined to simultaneously interrogate different gas samples using an open-ended centimeter-size multipass cell. Gas species of interest are demodulated with the second harmonics to enhance sensitivity, and high immunity to laser power variation is achieved by normalizing to the corresponding first harmonics. Performance of the optical sensor was experimentally evaluated using methane (CH4) and acetylene (C2H2) samples, which were separated by a 3-km fiber cable from the laser source. Sub-ppm sensitivity with 1-s time resolution was achieved for both gas species. Moreover, even with large laser intensity fluctuations ranging from 0 to 6 dB, the noise can be kept within 1.38 times as much as that of a stable intensity case. The reported spectroscopic technique would provide a promising optical sensor for remote monitoring of multi hazardous gases with high robustness.

7.
Rev Sci Instrum ; 91(8): 083106, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872969

ABSTRACT

This paper reports the development of a compact in situ real-time concentration analysis system for methane dissolved in seawater by using a continuous-wave cavity ringdown spectroscopy (CRDS) technique. The miniaturized design of the system, including optical resonance cavity and control and data acquisition-analysis electronics, has a cylindrical dimension of 550 mm in length and 100 mm in diameter. Ringdown signal generation, data acquisition and storage, current driver, and temperature controller of the diode laser are all integrated in the miniaturized system circuits, with an electrical power consumption of less than 12 W. Fitting algorithms of the ringdown signal and spectral line are implemented in a digital signal processor, which is the main control chip of the system circuit. The detection sensitivity for methane concentration can reach 0.4 ppbv with an approximate averaging time of 240 s (or 4 min). Comparing the system's measurement of ambient air against a high-quality commercial CRDS instrument has demonstrated a good agreement in results. In addition, as a "proof of concept" for measuring dissolved methane, the developed instrument was tested in an actual underwater environment. The results showed the potential of this miniaturized portable instrument for in situ gas sensing applications.

8.
Sensors (Basel) ; 20(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235470

ABSTRACT

We report here the development of a compact, open-path CO2 and H2O sensor based on the newly introduced scanned-wavelength modulation spectroscopy with the first harmonic phase angle (scanned-WMS-θ1f) method for high-sensitivity, high temporal resolution, ground-based measurements. The considerable advantage of the sensor, compared with existing commercial ones, lies in its fast response of 500 Hz that makes this instrument ideal for resolving details of high-frequency turbulent motion in exceptionally dynamic coastal regions. The good agreement with a commercial nondispersive infrared analyzer supports the utility and accuracy of the sensor. Allan variance analysis shows that the concentration measurement sensitivities can reach 62 ppb CO2 in 0.06 s and 0.89 ppm H2O vapor in 0.26 s averaging time. Autonomous field operation for 15-day continuous measurements of greenhouse gases (CO2/H2O) was performed on a shore-based monitoring tower in Daya Bay, demonstrating the sensor's long-term performance. The capability for high-quality fast turbulent atmospheric gas observations allow the potential for better characterization of oceanographic processes.

9.
Opt Express ; 28(3): 3289-3297, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122001

ABSTRACT

Tunable diode laser absorption spectroscopy has been widely employed for gas sensing, where the gas concentration is often obtained from the absorption signal with a known or a fixed absorption path length. Nevertheless, there are also numerous applications in which the absorption path length is very challenging to retrieve, e.g., open path remote sensing and gas absorption in scattering media. In this work, a new approach, based on the wavelength modulation spectroscopy (WMS), has been developed to measure the gas absorption signal and the corresponding absorption path length simultaneously. The phase angle of the first harmonic signal (1f phase angle) in the WMS technique is utilized for retrieving the absorption path length as well as the gas absorption signal. This approach has been experimentally validated by measuring carbon dioxide (CO2) concentration in open path environment. The CO2 concentration is evaluated by measuring the reflectance signal from a distant object with hundreds of meters away from the system. The measurement accuracy of the absorption path length, evaluated from a 7-day continuous measurement, can reach up to 1%. The promising result has shown a great potential of utilizing the 1f phase angle for gas concentration measurements, e.g., open path remote sensing applications.

10.
Rev Sci Instrum ; 90(6): 065110, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31255048

ABSTRACT

Robust marine carbon sensors with small size, low power consumption, and high sensitivity provide greater insight into the carbon cycle studies and resolve environmental variability. We report here the development of a diminutively integrated tunable diode laser absorption spectroscopy (TDLAS) system with a specially designed multipass gas cell for small amounts of dissolved gas extractions and measurements. It was used to detect and monitor carbon dioxide (CO2) dissolved in water and seawater. Systematic experiments have been carried out for system evaluation in the lab. Extracted CO2 was determined via its 4989.9 cm-1 optical absorption line. The achieved TDLAS measurement precision was 4.18 ppm for CO2, measured by averaging up to 88 s. The integrated absorbance was found to be linear to gas concentrations over a wide range. Comparison measurements of the atmospheric CO2 values with a commercial instrument confirmed a good accuracy of our TDLAS-based system. The first test campaign was also accomplished with a hollow fiber membrane contactor, and concentrations of CO2 were quantitatively detected with partial degasification operations. The results clearly show the ability to continuously measure dissolved gases and highlight the potential of the system to help us better understand physical and geochemical processes in a marine environment.

11.
J Immunol ; 184(10): 5502-9, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20404275

ABSTRACT

Initial exposure of monocytes/macrophages to LPS induces hyporesponsiveness to a second challenge with LPS, a phenomenon termed LPS tolerance. Molecular mechanisms responsible for endotoxin tolerance are not well defined. We and others have shown that IL-1R-associated kinase (IRAK)-M and SHIP-1 proteins, negative regulators of TLR4 signaling, increase in tolerized cells. TGF-beta1, an anti-inflammatory cytokine, is upregulated following LPS stimulation, mediating its effect through SMAD family proteins. Using a monocytic cell line, THP1, we show that LPS activates endogenous SMAD4, inducing its migration into the nucleus and increasing its expression. Secondary challenge with high dose LPS following initial low-dose LPS exposure does not increase IRAK-M or SHIP1 protein expression in small hairpin (sh)SMAD4 THP-1 cells compared with control shLUC THP1 cells. TNF-alpha concentrations in culture supernatants after second LPS challenge are higher in shSMAD4 THP-1 cells than shLUC THP1 cells, indicating failure to induce maximal tolerance in absence of SMAD4 signaling. Identical results are seen in primary murine macrophages and mouse embryonic fibroblasts, demonstrating the biological significance of our findings. TGF-beta1 treatment does not increase IRAK-M or SHIP1 protein expression in shSMAD4 THP-1 cells, whereas it does so in shLUC THP1 cells, indicating that TGF-beta1 regulates IRAK-M and SHIP1 expression through a SMAD4-dependent pathway. Knockdown of endogenous SHIP1 by shSHIP1 RNA decreases native and inducible IRAK-M protein expression and prevents development of endotoxin tolerance in THP1 cells. We conclude that in THP-1 cells and primary murine cells, SMAD4 signaling is required for maximal induction of endotoxin tolerance via modulation of SHIP1 and IRAK-M.


Subject(s)
Immune Tolerance , Lipopolysaccharides/toxicity , Smad4 Protein/physiology , Animals , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Immunologic , Down-Regulation/genetics , Down-Regulation/immunology , Humans , Immune Tolerance/genetics , Inositol Polyphosphate 5-Phosphatases , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/physiology , Lipopolysaccharides/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/physiology , RNA, Small Interfering/pharmacology , Signal Transduction/genetics , Signal Transduction/immunology , Transforming Growth Factor beta/physiology
12.
Anal Bioanal Chem ; 387(3): 1007-16, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17186227

ABSTRACT

Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using tebuconazole (TBZ) as a template. Frontal chromatography and selectivity experiments were used to determine the binding capabilities and binding specificities of different MIPs. The polymer that had the highest binding selectivity and capability was used as the solid-phase extraction (SPE) sorbent for the direct extraction of TBZ from different biological and environmental samples (cabbage, pannage, shrimp, orange juice and tap water). The extraction protocol was optimized and the optimum conditions were: conditioning with 5 mL methanol:acetic acid (9:1), 5 mL methanol and 5 mL water respectively, loading with 5 mL aqueous samples, washing with 1.2 mL acetonitrile (ACN):phosphate buffer (5:5, pH3), and eluting with 3 mL methanol. The MIPs were able to selectively recognize, effectively trap and preconcentrate TBZ over a concentration range of 0.5-15 micromol/L. The intraday and interday RSDs were less than 9.7% and 8.6%, respectively. The limit of quantification was 0.1 micromol/L. Under optimum conditions, the MISPE recoveries of spiked cabbage, pannage, shrimp, orange juice and tap water were 62.3%, 75.8%, 71.6%, 89% and 93.9%, respectively. MISPE gave better HPLC separation efficiencies and higher recoveries than C18 SPE and strong cation exchange (SCX) SPE.


Subject(s)
Food Analysis/methods , Polymers/chemistry , Solid Phase Extraction/methods , Triazoles/chemistry , Water Pollutants, Chemical/analysis , Acetic Acid/chemistry , Acetonitriles/chemistry , Buffers , Cation Exchange Resins , Chromatography, High Pressure Liquid/methods , Methanol/chemistry , Reproducibility of Results , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...