Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Front Immunol ; 15: 1399975, 2024.
Article in English | MEDLINE | ID: mdl-38774882

ABSTRACT

Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Immunotherapy/methods , Mutagenesis, Insertional , Molecular Targeted Therapy , Mutation , Animals
2.
Luminescence ; 39(5): e4769, 2024 May.
Article in English | MEDLINE | ID: mdl-38720528

ABSTRACT

Fluorene nucleus derivatives show great potential for building outstanding fluorescence probes. In this paper, a novel fluorescent probe was developed by reacting with fluorene core with azacyclobutane, which exhibits typical solvation chromogenic effect in solvent. The fluorescence of the probe quenched in highly polar solvent. Based on this phenomenon, a novel fluorescence system for trace water was constructed. The response of this probe was fast (30 s) and sensitive for the detection of trace water in organic solvents, and the detection limit of water content in DMSO reached 0.13%. In addition, the probe can also be made as a test strip combined with homemade portable device and a smartphone for rapid detection of trace water. The luminescence mechanism of the probe is theoretically calculated based on time-contained density functional theory (TDDFT). To showcase its practicality, it has been applied for the detection of trace water in honey and alcohol by dipstick. This method provides a new idea for designing efficient fluorescent probes based on dipstick and mobile phone rapid detection.


Subject(s)
Fluorenes , Fluorescent Dyes , Spectrometry, Fluorescence , Water , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorenes/chemistry , Water/chemistry , Molecular Structure , Limit of Detection , Density Functional Theory , Fluorescence , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 352: 124125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740244

ABSTRACT

Nanoplastics pollution has emerged as a global issue due to its widespread potential toxicity. This study delved in to toxic effects of nanoplastics on juvenile P. clarkii and molecular mechanisms from perspectives of growth, biochemical, histopathological analysis and transcriptome level for the first time. The findings of this study indicated that nanoplastics of different concentrations have varying influence mechanisms on juvenile P. clarkii. Nanoplastics have inhibitory effects on growth of juvenile P. clarkii, can induce oxidative stress. The biochemical analysis and transcriptome results indicated that 10 mg/L nanoplastics can activate the antioxidant defense system and non-specific immune system in juvenile P. clarkii, and affect energy metabolism and oxidative phosphorylation. While 20 mg/L and 40 mg/L have a destructive influence on the immune function in juvenile P. clarkii, leading to lipid peroxidation and oxidative damage, and induce apoptosis, can affect ion transport and osmotic pressure regulation. The findings of this study can offer foundational data for delving further into impacts of nanoplastics on crustaceans and toxicity mechanism.

4.
Phys Chem Chem Phys ; 26(16): 12778-12785, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38619587

ABSTRACT

Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm-3 and connected channels with diameters of 3.3-6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.

5.
J Behav Addict ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656807

ABSTRACT

Background and aims: Compulsivity contributes to the development and maintenance of multiple addictive disorders. However, the relationship between compulsivity-related cognitive features and problematic usage of the internet (PUI), an umbrella term for various internet use disorders/interfering behaviors, remains largely unclear, partly due to the multidimensional nature of compulsivity. This scoping review utilized a four-domain framework of compulsivity to consider this topic and aimed to summarize available evidence on compulsivity-related neuropsychological characteristics in PUI based on this framework. Methods: A systematic literature search was conducted by applying the combination of search term to the search engines of PubMed, PsycINFO and Web of Science. A four-domain framework of compulsivity, involving cognitive flexibility, set-shifting, attentional bias, and habit learning, was used to consider its complex structure and frequently used tasks. Main findings in related PUI studies were summarized based on this framework. Our secondary aim was to compare compulsivity-related features between different PUI subtypes. Results: Thirty-four empirical studies were retained, comprising 41 task-results and 35 independent data sets. Overall, individuals with PUI showed more consistent deficits in attentional biases and were relatively intact in set-shifting. Few studies have examined cognitive flexibility and habit learning, and more evidence is thus needed to establish reliable conclusions. Moreover, most studies focused on internet gaming disorder, whereas other PUI sub-types were not sufficiently examined. Conclusion: This systematic review highlights the use of the four-domain framework for advancing understanding of mechanisms underlying compulsivity in PUI. Related therapeutic implications and future directions are discussed.

7.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38661203

ABSTRACT

The motion of a particle along a channel of finite width is known to be affected by either the presence of energy barriers or changes in the bias forces along the channel direction. By using the lateral equilibrium hypothesis, we have successfully derived the effective diffusion coefficient for soft-walled channels, and the diffusion is found to be influenced by the curvature profile of the potential. A typical phenomenon of diffusion enhancement is observed under the appropriate parameter conditions. We first discovered an anomalous phenomenon of quasi-periodic enhancement of oscillations, which cannot be captured by the one-dimensional effective potential, under the combination of sub-Ohmic damping with two-dimensional restricted channels. We innovatively develop the effective potential and the formation mechanism of velocity variance under super-Ohmic and ballistic damping, and meanwhile, ergodicity is of concern. The theoretical framework of a ballistic system can be reinterpreted through the folding acceleration theory. This comprehensive analysis significantly enhances our understanding of diffusion processes in constrained geometries.

8.
BMC Infect Dis ; 24(1): 381, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589778

ABSTRACT

BACKGROUND: Nocardia farcinica is one of the most common Nocardia species causing human infections. It is an opportunistic pathogen that often infects people with compromised immune systems. It could invade human body through respiratory tract or skin wounds, cause local infection, and affect other organs via hematogenous dissemination. However, N. farcinica-caused bacteremia is uncommon. In this study, we report a case of bacteremia caused by N. farcinica in China. CASE PRESENTATION: An 80-year-old woman was admitted to Peking Union Medical College Hospital with recurrent fever, right abdominal pain for one and a half month, and right adrenal gland occupation. N. farcinica was identified as the causative pathogen using blood culture and plasma metagenomics next-generation sequencing (mNGS). The clinical considerations included bacteremia and adrenal gland abscess caused by Nocardia infection. As the patient was allergic to sulfanilamide, imipenem/cilastatin and linezolid were empirically administered. Unfortunately, the patient eventually died less than a month after the initiation of anti-infection treatment. CONCLUSION: N. farcinica bacteremia is rare and its clinical manifestations are not specific. Its diagnosis depends on etiological examination, which can be confirmed using techniques such as Sanger sequencing and mNGS. In this report, we have reviewed cases of Nocardia bloodstream infection reported in the past decade, hoping to improve clinicians' understanding of Nocardia bloodstream infection and help in its early diagnosis and timely treatment.


Subject(s)
Bacteremia , Nocardia Infections , Nocardia , Sepsis , Female , Humans , Aged, 80 and over , Nocardia/genetics , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Bacteremia/diagnosis , Bacteremia/drug therapy
9.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664384

ABSTRACT

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Subject(s)
Chiroptera , Ducks , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Chiroptera/virology , Humans , Ferrets/virology , Female , Male , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Mice , Ducks/virology , Virus Replication , Influenza, Human/virology , Influenza, Human/transmission , Lung/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Neuraminidase/metabolism
11.
Fa Yi Xue Za Zhi ; 40(1): 30-36, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500458

ABSTRACT

OBJECTIVES: To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS). METHODS: The pretreatment conditions of solid phase extraction (SPE) were optimized by orthogonal experimental design and the surface water samples were concentrated and extracted by Oasis® HLB and Oasis® MCX SPE columns in series. The extracts were separated by Kinetex® EVO C18 column, with gradient elution of 0.1% formic acid aqueous solution and 0.1% formic acid methanol solution. Q-TOF-MS 'fullscan' and 'targeted MS/MS' modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion, product ion and retention times. RESULTS: The 34 emerging contaminants exhibited good linearity in the concentration range respectively and the correlation coefficients (r) were higher than 0.97. The limit of detection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%. The intra-day precision was 0.78%-18.70%. The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected, with a concentration range of 1.93-157.71 ng/L. CONCLUSIONS: The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.


Subject(s)
Tandem Mass Spectrometry , Water , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Formates , Solid Phase Extraction/methods
12.
Angew Chem Int Ed Engl ; 63(21): e202402044, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38469657

ABSTRACT

The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.

13.
Nat Commun ; 15(1): 2380, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493161

ABSTRACT

As a fundamental property of light, polarization serves as an excellent information encoding carrier, playing significant roles in many optical applications, including liquid crystal displays, polarization imaging, optical computation and encryption. However, conventional polarization information encoding schemes based on Malus' law usually consider 1D polarization projections on a linear basis, implying that their encoding flexibility is largely limited. Here, we propose a Poincaré sphere (PS) trajectory encoding approach with metasurfaces that leverages a generalized form of Malus' law governing universal 2D projections between arbitrary elliptical polarization pairs spanning the entire PS. Arbitrary polarization encodings are realized by engineering PS trajectories governed by either arbitrary analytic functions or aligned modulation grids of interest, leading to versatile polarization image transformation functionalities, including histogram stretching, thresholding and image encryption within non-orthogonal PS loci. Our work significantly expands the encoding dimensionality of polarization information, unveiling new opportunities for metasurfaces in polarization optics for both quantum and classical regimes.

14.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38426324

ABSTRACT

Emerging clinical evidence suggests that sophisticated associations with circular ribonucleic acids (RNAs) (circRNAs) and microRNAs (miRNAs) are a critical regulatory factor of various pathological processes and play a critical role in most intricate human diseases. Nonetheless, the above correlations via wet experiments are error-prone and labor-intensive, and the underlying novel circRNA-miRNA association (CMA) has been validated by numerous existing computational methods that rely only on single correlation data. Considering the inadequacy of existing machine learning models, we propose a new model named BGF-CMAP, which combines the gradient boosting decision tree with natural language processing and graph embedding methods to infer associations between circRNAs and miRNAs. Specifically, BGF-CMAP extracts sequence attribute features and interaction behavior features by Word2vec and two homogeneous graph embedding algorithms, large-scale information network embedding and graph factorization, respectively. Multitudinous comprehensive experimental analysis revealed that BGF-CMAP successfully predicted the complex relationship between circRNAs and miRNAs with an accuracy of 82.90% and an area under receiver operating characteristic of 0.9075. Furthermore, 23 of the top 30 miRNA-associated circRNAs of the studies on data were confirmed in relevant experiences, showing that the BGF-CMAP model is superior to others. BGF-CMAP can serve as a helpful model to provide a scientific theoretical basis for the study of CMA prediction.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , RNA, Circular/genetics , ROC Curve , Machine Learning , Algorithms , Computational Biology/methods
15.
Int J Nanomedicine ; 19: 2005-2024, 2024.
Article in English | MEDLINE | ID: mdl-38469055

ABSTRACT

Background: Exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) have been considered as a promising cell-free therapeutic strategy for ischemic heart disease. Cardioprotective drug pretreatment could be an effective approach to improve the efficacy of MSC-exo. Nicorandil has long been used in clinical practice for cardioprotection. This study aimed to investigate whether the effects of exosomes derived from nicorandil pretreated MSC (MSCNIC-exo) could be enhanced in facilitating cardiac repair after acute myocardial infarction (AMI). Methods: MSCNIC-exo and MSC-exo were collected and injected into the border zone of infarcted hearts 30 minutes after coronary ligation in rats. Macrophage polarization was detected 3 days post-infarction, cardiac function as well as histological pathology were measured on the 28th day after AMI. Macrophages were separated from the bone marrow of rats for in vitro model. Exosomal miRNA sequencing was conducted to identify differentially expressed miRNAs between MSCNIC-exo and MSC-exo. MiRNA mimics and inhibitors were transfected to MSCs or macrophages to explore the specific mechanism. Results: Compared to MSC-exo, MSCNIC-exo showed superior therapeutic effects on cardiac functional and structural recovery after AMI and markedly elevated the ratio of CD68+ CD206+/ CD68+cells in infarcted hearts 3 days post-infarction. The notable ability of MSCNIC-exo to promote macrophage M2 polarization was also confirmed in vitro. Exosomal miRNA sequencing and both in vivo and in vitro experiments identified and verified that miR-125a-5p was an effector of the roles of MSCNIC-exo in vivo and in vitro. Furthermore, we found miR-125a-5p promoted macrophage M2 polarization by inhibiting TRAF6/IRF5 signaling pathway. Conclusion: This study suggested that MSCNIC-exo could markedly facilitate cardiac repair post-infarction by promoting macrophage M2 polarization by upregulating miR-125a-5p targeting TRAF6/IRF5 signaling pathway, which has great potential for clinical translation.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Rats , Animals , Nicorandil/metabolism , TNF Receptor-Associated Factor 6/metabolism , Exosomes/metabolism , Myocardial Infarction/pathology , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Macrophages/metabolism , Interferon Regulatory Factors/metabolism
16.
Eur J Pharmacol ; 970: 176493, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38484925

ABSTRACT

Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Cell Line, Tumor , Cell Proliferation , Iron , Heme Oxygenase-1
17.
Natl Sci Rev ; 11(2): nwad324, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314400

ABSTRACT

Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.

18.
J Agric Food Chem ; 72(6): 2935-2942, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317284

ABSTRACT

Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum has led to serious losses in the yields of oilseed rape and other crops every year. Here, we designed and synthesized a series of carboxamide derivatives containing a diphenyl ether skeleton by adopting the scaffold splicing strategy. From the results of the mycelium growth inhibition experiment, inhibition rates of compounds 4j and 4i showed more than 80% to control S. sclerotiorum at a dose of 50 µg/mL, which is close to that of the positive control (flubeneteram, 95%). Then, the results of a structure-activity relationship study showed that the benzyl scaffold was very important for antifungal activity and that introducing a halogen atom on the benzyl ring would improve antifungal activity. Furthermore, the results of an in vitro activity test suggested that these novel compounds can inhibit the activity of succinate dehydrogenase (SDH), and the binding mode of 4j with SDH was basically similar to that of the flutolanil derivative. Morphological observation of mycelium revealed that compound 4j could cause a damage on the mycelial morphology and cell structure of S. sclerotiorum, resulting in inhibition of the growth of mycelia. Furthermore, in vivo antifungal activity assessment of 4j displayed a good control of S. sclerotiorum (>97%) with a result similar to that of the positive control at a concentration of 200 mg/L. Thus, the diphenyl ether carboxamide skeleton is a new starting point for the discovery of new SDH inhibitors and is worthy of further development.


Subject(s)
Ascomycota , Brassica napus , Fungicides, Industrial , Antifungal Agents/pharmacology , Ascomycota/metabolism , Structure-Activity Relationship , Brassica napus/metabolism , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
19.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38324624

ABSTRACT

Connections between circular RNAs (circRNAs) and microRNAs (miRNAs) assume a pivotal position in the onset, evolution, diagnosis and treatment of diseases and tumors. Selecting the most potential circRNA-related miRNAs and taking advantage of them as the biological markers or drug targets could be conducive to dealing with complex human diseases through preventive strategies, diagnostic procedures and therapeutic approaches. Compared to traditional biological experiments, leveraging computational models to integrate diverse biological data in order to infer potential associations proves to be a more efficient and cost-effective approach. This paper developed a model of Convolutional Autoencoder for CircRNA-MiRNA Associations (CA-CMA) prediction. Initially, this model merged the natural language characteristics of the circRNA and miRNA sequence with the features of circRNA-miRNA interactions. Subsequently, it utilized all circRNA-miRNA pairs to construct a molecular association network, which was then fine-tuned by labeled samples to optimize the network parameters. Finally, the prediction outcome is obtained by utilizing the deep neural networks classifier. This model innovatively combines the likelihood objective that preserves the neighborhood through optimization, to learn the continuous feature representation of words and preserve the spatial information of two-dimensional signals. During the process of 5-fold cross-validation, CA-CMA exhibited exceptional performance compared to numerous prior computational approaches, as evidenced by its mean area under the receiver operating characteristic curve of 0.9138 and a minimal SD of 0.0024. Furthermore, recent literature has confirmed the accuracy of 25 out of the top 30 circRNA-miRNA pairs identified with the highest CA-CMA scores during case studies. The results of these experiments highlight the robustness and versatility of our model.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , RNA, Circular/genetics , Likelihood Functions , Neural Networks, Computer , Neoplasms/genetics , Computational Biology/methods
20.
JMIR Res Protoc ; 13: e53853, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329790

ABSTRACT

BACKGROUND: Older patients with cancer experience cognitive impairment and a series of neurocognitive symptoms known as chemobrain due to chemotherapy. Moreover, older populations are disproportionately affected by chemobrain and heightened negative mental health outcomes after cytotoxic chemical drug therapy. Chinese acupuncture is an emerging therapeutic option for chemotherapy-induced cognitive impairment in older patients with cancer, despite limited supporting evidence. OBJECTIVE: Our study aims to directly contribute to the existing knowledge of this novel Chinese medicine mode in older patients with cancer enrolled at the Department of Oncology/Chinese Medicine, Nanjing First Hospital, China, thereby establishing the basis for further research. METHODS: This study involves a 2-arm, prospective, randomized, assessor-blinded clinical trial in older patients with cancer experiencing chemobrain-related stress and treated with Chinese acupuncture from September 30, 2023, to December 31, 2025. We will enroll 168 older patients with cancer with clinically confirmed chemobrain. These participants will be recruited through screening by oncologists for Chinese acupuncture therapy and evaluation. Electroacupuncture will be performed by a registered practitioner of Chinese medicine. The electroacupuncture intervention will take about 30 minutes every session (2 sessions per week over 8 weeks). For the experimental group, the acupuncture points are mainly on the head, limbs, and abdomen, with a total of 6 pairs of electrically charged needles on the head, while for the control group, the acupuncture points are mainly on the head and limbs, with only 1 pair of electrically charged needles on the head. RESULTS: Eligible participants will be randomized to the control group or the experimental group in 1:1 ratio. The primary outcome of this intervention will be the scores of the Montreal Cognitive Assessment. The secondary outcomes, that is, attentional function and working memory will be determined by the Digit Span Test scores. The quality of life of the patients and multiple functional assessments will also be evaluated. These outcomes will be measured at 2, 4, 6, and 8 weeks after the randomization. CONCLUSIONS: This efficacy trial will explore whether Chinese electroacupuncture can prevent chemobrain, alleviate the related symptoms, and improve the quality of life of older patients with cancer who are undergoing or are just going to begin chemotherapy. The safety of this electroacupuncture intervention for such patients will also be evaluated. Data from this study will be used to promote electroacupuncture application in patients undergoing chemotherapy and support the design of further real-world studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT05876988; https://clinicaltrials.gov/ct2/show/NCT05876988. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/53853.

SELECTION OF CITATIONS
SEARCH DETAIL
...