Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chemosphere ; 333: 138907, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169091

ABSTRACT

To ascertain the reaction variables on o-chloroaniline (o-ClA) mineralization, total nitrogen (TN) removal rate, and N-species distribution, o-ClA was subjected to catalytic supercritical water oxidation (CSCWO) in a fused quartz tube reactor (FQTR). The findings demonstrated that when the temperature, reaction time, and excess oxidant were 400 °C, 90 min, and 150%, respectively, the mineralization rate of o-ClA could reach more than 95%. Moreover, potential degradation pathways of o-ClA in supercritical water oxidation (SCWO) was proposed according to the GC-MS results. TN removal rate is significantly impacted by Ru/rGO, despite the fact that its catalytic effect on the mineralization of o-ClA was not particularly noteworthy. Compared with no catalyst, the TN removal rate of o-ClA obviously increased from 44.1% to 90.3% at 400 °C, 10 wt% Ru loading, 90 min and 200% excess oxidant. In addition, N-species distribution in SCWO and CSCWO were also investigated. Results indicated that the Ru/rGO catalyst could accelerate the oxidation of ammonia-N and convert it to nitrate-N, promoting N2 generation. Finally, the possible N transformation pathway in CSCWO of o-ClA was proposed. As a result, this work offers fundamental information about o-ClA catalytic oxidation removal in the SCWO process.


Subject(s)
Water Pollutants, Chemical , Water , Nitrogen , Oxidation-Reduction , Aniline Compounds , Oxidants
2.
Sci Total Environ ; 882: 163326, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37030361

ABSTRACT

Sewage sludge (SS) contains a certain amount of nitrogen (N), resulting in various content of N in the pyrolysis products. Investigates on how to control the generation of NH3 and HCN (deleterious gas-N species) or convert it to N2 and maximize transforming N in sewage sludge (SS-N) into potentially valuable N-containing products (such as char-N and/or liquid-N) are of great significance for SS management. Understanding the nitrogen migration and transformation (NMT) mechanisms in SS during the pyrolysis process is essential for investigating the aforementioned issues. Therefore, in this review, the N content and species in SS are summarized, and the influencing factors during the SS pyrolysis process (such as temperature, minerals, atmosphere, and heating rate) that affect NMT in char, gas, and liquid products are analyzed. Furthermore, N control strategies in SS pyrolysis products are proposed toward environmental and economic sustainability. Finally, the state-of-the-art of current research and future prospects are summarized, with a focus on the generation of value-added liquid-N and char-N products, while concurrently reducing NOx emission.

3.
Anal Bioanal Chem ; 415(9): 1751-1764, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764938

ABSTRACT

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) studies on trace element concentration and their spatial distribution in CaC2O4-matrix urinary stones are important but powerfully rely on matrix-matched external calibration. In this work, CaC2O4 precipitate CaOx-1 which was doped with Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr was prepared by the homogeneous co-precipitation method. It had a homogeneous distribution of major (RSD of 0.46%) and trace elements (RSD of 1.83-6.92%) due to the negligible concentration difference compared with that prepared by the heterogeneous co-precipitation method. Based on this, an analytical method for quantitative determination of elemental concentration in CaC2O4-matrix samples was established using CaOx-1 as a calibration standard, and the accuracy of this method was assessed by calibrating the elemental concentration in another synthetic CaC2O4 precipitate CaOx-2 with relative deviation (Dr) from - 11.43% (Mn) to 9.76% (Mg). Finally, a methodology for quantitative imaging of Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr in urinary stones via LA-ICP-MS was developed. From the elemental distributional maps, an annular texture can be found for Mg, Cu, Zn, and Sr, which corresponds to the annular white and brown texture in the real urinary stone. A homogeneous distribution of Fe and low concentrations of Cr and Co were found throughout the stone, while Mn was highly concentrated in the margin of the stone. All these results demonstrate that quantitative distribution patterns of Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr can be obtained by LA-ICP-MS using CaOx-1 as a calibration standard, which can provide potential evidence for urological and other medical studies.


Subject(s)
Laser Therapy , Trace Elements , Urinary Calculi , Humans , Calibration , Calcium Oxalate , Spectrum Analysis/methods , Trace Elements/analysis
4.
Sci Total Environ ; 844: 157202, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35810898

ABSTRACT

A renewable tri-metallic spinel decorated biochar adsorbent (MZF-BC) was fabricated by a facile hydrothermal method and to remove tetracycline. The physicochemical properties of MZF-BC were well studied. MZF-BC with a hybrid pore structure of mesopores (~7.6 nm) and macropores (~50 nm) has the maximum tetracycline adsorption capacity reaching 142.4 mg g-1. Through the study of adsorption kinetics, isotherms and key influencing factors, it was found that MZF-BC adsorption on tetracycline was primarily multi-layer effect with the initial adsorption behavior of pore filling associated with hydrogen bonding and π-π stacking. Furthermore, the MZF-BC performs excellent regeneration ability by driving Fenton-like catalysis as the self-cleaning process in the liquid phase. This study contributes to a new insight into the in-situ regeneration of biochar-based adsorbents after adsorbing organic pollutants in pharmaceutical wastewater treatment.


Subject(s)
Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Charcoal/chemistry , Ferric Compounds , Kinetics , Tetracycline , Water Pollutants, Chemical/analysis
5.
Bioresour Technol ; 361: 127670, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35878775

ABSTRACT

4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.


Subject(s)
Chlorophenols , Wastewater , Biodegradation, Environmental , Chlorophenols/metabolism , Gram-Negative Bacteria/metabolism , Wastewater/microbiology
6.
Front Bioeng Biotechnol ; 10: 878686, 2022.
Article in English | MEDLINE | ID: mdl-35646832

ABSTRACT

Humic substances (HSs) occupy 80% of organic matter in soil and have been widely applied for soil remediation agents, potential battery materials, and adsorbents. Since the HS extraction rate is very low by microbial degradation in nature, artificial humification processes such as aerobic composting (AC) and hydrothermal treatment (HT) have attracted a great deal of attention as the most important strategies in HS production. This article aims to provide a state-of-the-art review on the development of conversion of biomass waste into HSs based on AC and HT for the first time in terms of mechanisms, characteristics of HSs' molecular structure, and influencing factors. In addition, some differences based on the aforementioned information between AC and HT are reviewed and discussed in the conversion of biomass waste into HSs in a pioneering way. For biomass waste conversion, a feasible strategy on effective humification processes by combining AC with HT is proposed.

7.
Sci Total Environ ; 837: 155720, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35525366

ABSTRACT

Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.


Subject(s)
Metal Nanoparticles , Nanocomposites , Anti-Bacterial Agents , Disinfection/methods , Oxides , Silver , Technology
8.
Bioresour Technol ; 331: 124973, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33798854

ABSTRACT

In this study, the reduction mechanism of using CO to reduce biomass-oxidized pellets (BOP) and general-oxidized pellets (GOP) was deeply analyzed. The effect of biomass addition on the reduction of oxidized pellets and the change of reduction kinetics were studied. The addition of 2 wt% biomass into pellets increases pores of the oxidized pellets, promotes the rate of CO entering the pellets and the overflow of CO2, which results in faster reduction of the oxidized pellets. The reduction reactions of BOP and GOP were controlled by internal diffusion, mixing control and interface control sequentially. Also, addition of the biomass to the pellets decreases the activation energy required for their reduction, from 87.30 to 80.65 kJ·mol-1. The addition of biomass shortens the reduction time by 3% which can reduce the energy consumption. Therefore, the biomass together with CO enhances the reduction of oxidized pellets and has real environmental benefits.


Subject(s)
Carbon Monoxide , Biomass , Kinetics
9.
Bioresour Technol ; 320(Pt A): 124264, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33130541

ABSTRACT

A Fe/Mn oxides loaded biochar (FeMn-BC) was prepared to enhance the adsorption of tetracycline (TC). γ-Fe2O3 and MnO2 were assigned to the Fe and Mn oxides, respectively. The enhanced adsorption of TC was dominated by the loaded γ-Fe2O3 and MnO2. According to Akaike-Information-Criteria evaluation, Elovich kinetic and Langmuir isotherm models could best describe the adsorption with a maximum capacity of 14.24 mg/g. During adsorption process, the γ-Fe2O3 and MnO2 hydrolyzed into hydroxides (FeOOH and MnOOH) which acted as bases to complex with TC2- ion under alkaline condition (pH = 11). After the adsorption, the concentrations of leached Fe and Mn could meet the requirements PRC standards GB13456-2012 and GB8978-1996, respectively. The FeMn-BC had ~24% on TC removal (initial concentration of 20 mg/L) after four-cycles regeneration. The FeMn-BC was also available for TC adsorptions in column tests and actual wastewater.


Subject(s)
Manganese Compounds , Water Pollutants, Chemical , Adsorption , Charcoal , Iron , Kinetics , Manganese , Oxides , Tetracycline , Water Pollutants, Chemical/analysis
10.
Bioresour Technol ; 315: 123831, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32707502

ABSTRACT

Catalytic pyrolysis of rain tree biomass (RTB), a typical horticultural waste, was investigated with nano-NiO as catalyst produced from hazardous nickel plating slag (NPS). It appeared from the analyses by FTIR, TGA, XRD, BET, and FESEM/EDX that nano-NiO produced had a SBET and mean particle size of 53.4 m2/g and 112.3 nm. The catalytic pyrolysis kinetics of RTB with and without catalyst were studied by Friedman method. It was found that the activation energy (Ea) was in the range of 177 to 360 kJ/mol at a conversion rate of 0.1 - 0.75. The results further revealed that the H2 increase ratio in pyrolysis above 500 °C was more than 40% in the presence of catalyst. Consequently, this study showed the great potential of nano-NiO as a high-efficiency catalyst in recovering energy from biomass.


Subject(s)
Nickel , Pyrolysis , Biomass , Oxides , Rain , Trees
11.
Nanomaterials (Basel) ; 10(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708401

ABSTRACT

Ex situ catalytic pyrolysis of biomass using char-supported nanoparticles metals (Fe and Ni) catalyst for syngas production and tar decomposition was investigated. The characterizations of fresh Fe-Ni/char catalysts were determined by TGA, SEM-EDS, Brunauer-Emmett-Teller (BET), and XPS. The results indicated that nanoparticles metal substances (Fe and Ni) successfully impregnated into the char support and increased the thermal stability of Fe-Ni/char. Fe-Ni/char catalyst exhibited relatively superior catalytic performance, where the syngas yield and the molar ratio of H2/CO were 0.91 Nm3/kg biomass and 1.64, respectively. Moreover, the lowest tar yield (43.21 g/kg biomass) and the highest tar catalytic conversion efficiency (84.97 wt.%) were also obtained under the condition of Ni/char. Ultimate analysis and GC-MS were employed to analyze the characterization of tar, and the results indicated that the percentage of aromatic hydrocarbons appreciably increased with the significantly decrease in oxygenated compounds and nitrogenous compounds, especially in Fe-Ni/char catalyst, when compared with no catalyst pyrolysis. After catalytic pyrolysis, XPS was employed to investigate the surface valence states of the characteristic elements in the catalysts. The results indicated that the metallic oxides (MexOy) were reduced to metallic Me0 as active sites for tar catalytic pyrolysis. The main reactions pathway involved during ex situ catalytic pyrolysis of biomass based on char-supported catalyst was proposed. These findings indicate that char has the potential to be used as an efficient and low-cost catalyst toward biomass pyrolysis for syngas production and tar decomposition.

12.
Chemosphere ; 257: 127264, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32516671

ABSTRACT

Degradation of phenol by sodium persulfate (SPS) in hot compressed water (HCW) was investigated in a lab-built fused quartz tube reactor (FQTR) coupled with Raman spectroscopy system. The species of S2O82-, SO42-, HSO4-, SO32- and HSO3- in the reaction system were qualitatively and quantitatively analyzed by Raman spectroscopy. The hydrothermal stability of phenol and SPS at different temperature and the degradation of phenol by SPS were also studied. The results indicated that phenol was not stable in aqueous solution above 200 °C, and that only SO42- was generated in the hydrolysis of SPS at temperatures below 50 °C, and SO42- and HSO4- were generated at higher temperatures. The maximum conversion rate (90.93%) and mineralization efficiency (38.88%) of phenol by SPS was obtained at reaction temperature of 300 °C with 180 min reaction time. During the degradation of phenol by SPS, HSO4- was the main product and S∗ (not detected by Raman spectroscopy) exhibits a positive correlation with temperature. In addition, a degradation pathway of phenol by SPS was proposed. The degradation data for the kinetic analysis indicated that the reaction followed pseudo first-order kinetics, and the reaction rate constants (ks) were given as k50 °C = 0.0083 min-1, k100°C = 0.0197 min-1, k200 °C = 0.0498 min-1, k300 °C = 0.0619 min-1 and k400°C = 0.0505 min-1 at 30 min reaction. Moreover, the activation energy (12.580 kJ mol-1), the enthalpy change (9.064 kJ mol-1) and the entropy change (-222.104 J mol-1) of the reaction were also calculated.


Subject(s)
Phenol/metabolism , Sodium Compounds/toxicity , Sulfates/toxicity , Water Pollutants, Chemical/toxicity , Hot Temperature , Kinetics , Oxidation-Reduction , Phenol/chemistry , Sodium Compounds/metabolism , Spectrum Analysis, Raman , Sulfates/metabolism , Temperature , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Purification/methods
13.
Nanomaterials (Basel) ; 10(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979270

ABSTRACT

Nano-zero-valent iron biochar derived from almond shell (nZVI-ASBC) was used for hexavalent chromium (CR) removal. Experiments showed that pH was the main factor (p < 0.01) that affected the experimental results. At a dosage of 10 mg·L-1 and pH of 2-6, in the first 60 min, nZVI-ASBC exhibited a removal efficiency of 99.8%, which was approximately 20% higher than the removal yield at pH 7-11. Fourier transform infrared spectroscopy results indicated N-H was the main functional group that influenced the chemisorption process. The pseudo second-order dynamics and Langmuir isotherm models proved to be the most suitable. Thermodynamic studies showed that the reaction was exothermic and spontaneous at low temperatures (T < 317 K). Various interaction mechanisms, including adsorption and reduction, were adopted for the removal of Cr(VI) using the nZVI-ASBC composite. The findings showed that the BC-modified nZVI prepared with almond shell exerts a good effect and could be used for the removal of Cr(VI).

14.
Bioresour Technol ; 219: 510-520, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27521788

ABSTRACT

Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law.


Subject(s)
Biomass , Cellulose/metabolism , Crops, Agricultural/metabolism , Lignin/metabolism , Cellulose/chemistry , Crops, Agricultural/chemistry , Kinetics , Lignin/chemistry , Models, Theoretical , Polysaccharides/chemistry , Polysaccharides/metabolism , Thermogravimetry
15.
J Sci Food Agric ; 96(15): 4840-4849, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27116042

ABSTRACT

In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions. © 2016 Society of Chemical Industry.


Subject(s)
Agriculture/methods , Charcoal , Crops, Agricultural/growth & development , Soil/chemistry , Carbon/chemistry , Charcoal/chemistry , Climate Change , Conservation of Natural Resources/methods , Environmental Pollution/prevention & control , Fertilizers , Greenhouse Effect/prevention & control , Soil Microbiology , Water
16.
Bioresour Technol ; 211: 101-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27010339

ABSTRACT

The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms.


Subject(s)
Biofuels , Hydrocharitaceae/metabolism , Models, Theoretical , Anaerobiosis , Bioreactors , Hydrocharitaceae/chemistry , Hydrolysis , Kinetics
17.
Waste Manag ; 48: 383-388, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26481636

ABSTRACT

The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition.


Subject(s)
Hot Temperature , Sewage/chemistry , Waste Disposal, Fluid/methods , Acidithiobacillus , Bioreactors , Cadmium/chemistry , Copper/chemistry , Hydrogen-Ion Concentration , Lead/chemistry , Metals/chemistry , Metals, Heavy/chemistry , Spectroscopy, Fourier Transform Infrared , Wastewater , Water Pollutants, Chemical/chemistry , Zinc/chemistry
18.
J Sci Food Agric ; 96(1): 199-206, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-25582546

ABSTRACT

BACKGROUND: Biochar has been mostly used in conventional arable soils for improving soil fertility. This study investigated the effect of biochars of different temperatures on plant growth and desert soil properties. Biochars of different temperatures (i.e. 400, 500, 600, 700, and 800 °C) were mixed in the soil with 5% by mass, and the treatments were designated as T-400, T-500, T-600, T-700 and T-800, respectively. Sorghum was used as a test crop, and the effect of biochar on plant height, yield and soil properties was evaluated. RESULTS: Sorghum yield increased by 19% and 32% under T-400 and T-700, respectively, above the control. Biochar reduced depth-wise moisture depletion in soil columns and hence improved soil water-holding capacity by 14% and 57% under T-400 and T-700, respectively. Soil hydraulic conductivity was reduced by 15% and 42%, and moisture-retention capacity was improved by 16% and 59%. Hence, sorghum net water-use efficiency increased by 52% and 74% in T-400 and T-700, respectively. Biochar also improved soil total carbon, cation exchange capacity and plant nutrient content. CONCLUSION: The addition of fast pyrolysis biochar made from pine sawdust improved the quality of Kubuqi Desert soil and enhanced plant growth. Hence, it can be used for desert modification.


Subject(s)
Charcoal , Desert Climate , Pinus , Soil/chemistry , Sorghum/growth & development , Temperature , Water/physiology , Carbon/analysis , Cations/analysis , Crop Production/methods , Crops, Agricultural/growth & development , Nutritive Value , Plant Development , Wood
19.
Bioresour Technol ; 194: 364-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26210527

ABSTRACT

The pyrolysis characteristics and kinetic of Hydrilla verticillata (HV) have been investigated using non-isothermal thermogravimetric analysis. The results showed that the pyrolysis behavior of HV can be divided into two independent stages. The kinetics of Stage I was investigated using a distributed activation energy model (DAEM) with discrete 99 first-order reactions. Stage II was an independent stage which corresponds to the decomposition of calcium oxalate, whose kinetics was studied using iso-conversional method together with compensation effect and master-plots method. The activation energies ranged from 92.39 to 506.17 and 190.42 to 222.48 kJ/mol for the first and second stages respectively. Calculated data gave very good fit to the experimental data.


Subject(s)
Hot Temperature , Hydrocharitaceae/metabolism , Thermogravimetry , Calcium Carbonate/chemistry , Calcium Oxalate/chemistry , Chemistry, Physical , Kinetics , Models, Statistical , Models, Theoretical
20.
Bioresour Technol ; 192: 441-50, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26080101

ABSTRACT

Pyrolysis characteristics and kinetic of five lignocellulosic biomass pine wood sawdust, fern (Dicranopteris linearis) stem, wheat stalk, sugarcane bagasse and jute (Corchorus capsularis) stick were investigated using thermogravimetric analysis. The pyrolysis of five lignocellulosic biomass could be divided into three stages, which correspond to the pyrolysis of hemicellulose, cellulose and lignin, respectively. Single Gaussian activation energy distributions of each stage are 148.50-201.13 kJ/mol with standard deviations of 2.60-13.37 kJ/mol. The kinetic parameters of different stages were used as initial guess values for three-parallel-DAEM model calculation with good fitting quality and fast convergence rate. The mean activation energy ranges of hemicellulose, cellulose and lignin were 148.12-164.56 kJ/mol, 171.04-179.54 kJ/mol and 175.71-201.60 kJ/mol, with standard deviations of 3.91-9.89, 0.29-1.34 and 23.22-27.24 kJ/mol, respectively. The mass fractions of hemicellulose, cellulose and lignin in lignocellulosic biomass were respectively estimated as 0.12-0.22, 0.54-0.65 and 0.17-0.29.


Subject(s)
Lignin/metabolism , Models, Theoretical , Thermogravimetry/methods , Biofuels , Biomass , Biotechnology/methods , Cellulose/chemistry , Corchorus/chemistry , Kinetics , Lignin/chemistry , Pinus/chemistry , Saccharum/chemistry , Temperature , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...