Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
IEEE Trans Cybern ; PP2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032782

ABSTRACT

This article introduces a novel approach called terminal sliding-mode control for achieving time-synchronized convergence in multi-input-multi-output (MIMO) systems under disturbances. To enhance controller design, the systems are categorized into two groups: 1) input-dimension-dominant and 2) state-dimension-dominant, based on signal dimensions and their potential for achieving thorough time-synchronized convergence. We explore sufficient Lyapunov conditions using terminal sliding-mode designs and develop adaptive controllers for the input-dimension-dominant case. To handle perturbations, we design a multivariable disturbance observer with a super-twisting structure, which is integrated into the controller. By utilizing the sliding-mode technique and the disturbance observer, the proposed controller ensures simultaneous convergence of all output dimensions. In the state-dimension-dominant case, where a full-rank system matrix is absent, only specific output elements converge to equilibrium simultaneously. We conduct comparative simulations on a practical system to highlight the effectiveness of our proposed method for the input-dimension-dominant case. Statistical results reveal the benefits of shorter output trajectories and reduced energy consumption. For the state-dimension-dominant case, we present numerical examples to validate the semi-time-synchronized property.

2.
Analyst ; 148(9): 2021-2034, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36970954

ABSTRACT

Blood analysis through complete blood count is the most basic medical test for disease diagnosis. Conventional blood analysis requires bulky and expensive laboratory facilities and skilled technicians, limiting the universal medical use of blood analysis outside well-equipped laboratory environments. Here, we propose a multiparameter mobile blood analyzer combined with label-free contrast-enhanced defocusing imaging (CEDI) and machine vision for instant and on-site diagnostic applications. We designed a low-cost and high-resolution miniature microscope (size: 105 mm × 77 mm × 64 mm, weight: 314 g) that comprises a pair of miniature aspheric lenses and a 415 nm LED for blood image acquisition. The analyzer, adopting CEDI, can obtain both the refractive index distributions of the white blood cell (WBC) and hemoglobin spectrophotometric information, enabling the analyzer to supply rich blood parameters, including the five-part WBC differential count, red blood cell (RBC) count, and mean corpuscular hemoglobin (MCH) quantification with machine vision algorithms and the Lambert-Beer law. We have shown that our assay can analyze a blood sample within 10 minutes without complex staining, and measurements (30 samples) from the analyzer have a strong linear correlation with clinical reference values (significance level of 0.0001). This study provides a miniature, light weight, low-cost, and easy-to-use blood analysis technique that overcomes the challenge of simultaneously realizing FWD count, RBC count, and MCH analysis using a mobile device and has great potential for integrated surveillance of various epidemic diseases, including coronavirus infection, invermination, and anemia, especially in low- and middle-income countries.


Subject(s)
Hematologic Tests , Hemoglobins , Blood Cell Count/methods , Hematologic Tests/methods , Erythrocyte Count/methods , Leukocyte Count , Hemoglobins/analysis
3.
IEEE Trans Neural Netw Learn Syst ; 34(11): 8791-8801, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35254995

ABSTRACT

This article addresses the event-triggered coordinated control problem for multiple Euler-Lagrange systems subject to parameter uncertainties and external disturbances. Based on the event-triggered technique, a distributed coordinated control scheme is first proposed, where the neural network-based estimation method is incorporated to compensate for parameter uncertainties. Then, an input-based continuous event-triggered (CET) mechanism is developed to schedule the triggering instants, which ensures that the control command is activated only when some specific events occur. After that, by analyzing the possible finite-time escape behavior of the triggering function, the real-time data sampling and event monitoring requirement in the CET strategy is tactfully ruled out, and the CET policy is further transformed into a periodic event-triggered (PET) one. In doing so, each agent only needs to monitor the triggering function at the preset periodic sampling instants, and accordingly, frequent control updating is further relieved. Besides, a parameter selection criterion is provided to specify the relationship between the control performance and the sampling period. Finally, a numerical example of attitude synchronization for multiple satellites is performed to show the effectiveness and superiority of the proposed coordinated control scheme.

4.
Biomed Opt Express ; 13(9): 4752-4772, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36187242

ABSTRACT

Label-free imaging technology is a trending way to simplify and improve conventional hematology analysis by bypassing lengthy and laborious staining procedures. However, the existing methods do not well balance system complexity, data acquisition efficiency, and data analysis accuracy, which severely impedes their clinical translation. Here, we propose defocusing phase-contrast imaging under the illumination of 415 nm light to realize label-free hematology analysis. We have verified that the subcellular morphology of blood components can be visualized without complex staining due to the factor that defocusing can convert the second-order derivative distribution of samples' optical phase into intensity and the illumination of 415 nm light can significantly enhance the contrast. It is demonstrated that the defocusing phase-contrast images for the five leucocyte subtypes can be automatically discriminated by a trained deep-learning program with high accuracy (the mean F1 score: 0.986 and mean average precision: 0.980). Since this technique is based on a regular microscope, it simultaneously realizes low system complexity and high data acquisition efficiency with remarkable quantitative analysis ability. It supplies a label-free, reliable, easy-to-use, fast approach to simplifying and reforming the conventional way of hematology analysis.

5.
Acta Biochim Pol ; 69(3): 625-632, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36070433

ABSTRACT

BACKGROUND: Concurrent chemo-radiotherapy (CCRT) is an ideal treatment for advanced head and neck squamous cell carcinoma (HNSCC). The performance of CCRT induces severe toxicities in HNSCC patients and decreases the quality of life (QOL). Maitake D-Fraction is proteoglycan which has anti-tumor function associated with its immunomodulatory capacity. The polysaccharides of Maitake also have anti-radiation effect in radiation therapy during cancer treatment. This research aimed to illustrate Maitake D-Fraction effects on CCRT-associated adverse events and QOL. METHODS: During CCRT, Maitake capsules were taken orally 3 times a day, each time 4 capsules, one hour before meals. QOL were analyzed by EORTC QLQ-C30-Chinese version and EORTC QLQ-HandN-35-Chinese version. 141 patients were recruited and divided into an intervention group and a placebo group. RESULTS: Frequencies of severe CCRT-associated adverse events in intervention group were less than in placebo group. Global QOL score in intervention group was higher than in placebo group 5 weeks post treatment. The proportion of patients returning to baseline global QOL score at 6-month was increased by Maitake D-Fraction administration. CONCLUSION: In conclusion, this randomized clinical trial demonstrated that in advanced laryngeal and pharyngeal cancer patients, the oral administration of Maitake D-Fraction alleviated CCRT-related adverse events and deterioration in QOL.


Subject(s)
Chemoradiotherapy , Grifola , Head and Neck Neoplasms , Pharyngeal Neoplasms , Proteoglycans , Chemoradiotherapy/adverse effects , Grifola/chemistry , Head and Neck Neoplasms/drug therapy , Humans , Pharyngeal Neoplasms/drug therapy , Pharyngeal Neoplasms/radiotherapy , Polysaccharides , Proteoglycans/therapeutic use , Quality of Life , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy
6.
IEEE Trans Cybern ; 52(11): 12551-12560, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34043520

ABSTRACT

This article considers the connectivity preservation coordinated control problem for multiple spacecraft systems subject to limited communication resources and sensing capability. By constructing a novel bump function, a distance-dependent dynamic communication network model is first presented, which characterizes the interaction strength as a nonlinear smooth function varying with the relative distance of spacecraft continuously. Subsequently, based on an edge-tension potential function, a distributed event-driven coordinated control scheme is proposed to achieve formation consensus, while ensuring that adjacent spacecraft is always within the allowable connectivity range. Meanwhile, to avoid redundant data transmissions, a hybrid dynamic event-triggered mechanism with maximum triggering interval is developed to schedule the communication frequency among spacecraft. It is proven that the onboard communication resources occupation can be reduced significantly and the Zeno phenomenon is strictly excluded. Finally, the efficiency of the proposed method for, as an example, four-spacecraft formation system is substantiated.

7.
Cell Cycle ; 20(19): 2010-2020, 2021 10.
Article in English | MEDLINE | ID: mdl-34470582

ABSTRACT

Glioblastoma (GBM) is the most frequent tumor in the central nervous system. Long non-coding RNAs (lncRNAs) have been widely accepted as essential participators in cancer progression. Nonetheless, the specific role and mechanism of lncRNA SRY-box transcription factor 2 overlapping transcript (SOX2-OT) in GBM have not been studied. We evaluated expression levels of SOX2-OT, miR-192-5p and Ras-related protein Rab-2A (RAB2A) in GBM cells via qRT-PCR. To investigate the roles of SOX2-OT in GBM cells, CCK-8, JC-1, EdU, and western blot assays were performed. The connection among SOX2-OT, miR-192-5p and RAB2A in GBM cells was explored through pull down, luciferase reporter, and RIP assays. Western blot and qRT-PCR were employed to analyze the activity of extracellular-signal-regulated kinase (ERK) signaling pathway. SOX2-OT expression was higher in GBM cell lines than in normal cells. SOX2-OT knockdown repressed proliferation and promoted apoptosis of GBM cells. Mechanism assays revealed that SOX2-OT could sponge miR-192-5p. Moreover, RAB2A was certified to be the target gene of miR-192-5p. Overexpression of RAB2A reversed the repressive function of SOX2-OT knockdown on GBM cell growth. Furthermore, SOX2-OT activated ERK signaling pathway in GBM cells. SOX2-OT regulated miR-192-5p/RAB2A axis and ERK pathway to promote GBM cell growth.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
8.
Eur J Cancer Care (Engl) ; 30(1): e13355, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159422

ABSTRACT

BACKGROUND: Chemotherapy of nasopharyngeal carcinoma (NPC) can lead to significant side effects and complications. Exercises during chemoradiotherapy have potential to reduce complications and fatigue and improve quality of life. The aim of the randomised clinical study was to investigate the benefits of resistance exercise during chemoradiotherapy in NPC patients. METHODS: A total of 146 patients were randomised to perform resistance or relaxation exercises during chemoradiotherapy. Resistance exercise consisted of eight machine-based progressive resistance exercises, and relaxation control consisted of progressive muscle relaxation. Side effects and complications were analysed, and fatigue was assessed by Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) scores. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (EORTC QLQ30) scale was used to evaluate the effects of resistance exercise or relaxation control on quality of life. Per-protocol analysis was performed on the collected data. RESULTS: Resistance exercise has stronger effects than relaxation in reducing complications, including oral mucositis, mouth-opening difficulties, xerostomia, hearing loss and nasal congestion, and alleviating both physical fatigue and mental fatigue. The improvement in quality of life was also more prominent among patients performing resistance exercise. CONCLUSIONS: For NPC patients undergoing chemoradiotherapy, resistance exercise has a better efficacy in reducing complications, alleviating fatigue and improving quality of life.


Subject(s)
Nasopharyngeal Neoplasms , Resistance Training , Chemoradiotherapy/adverse effects , Humans , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Neoplasms/therapy , Quality of Life , Treatment Outcome
9.
Opt Lett ; 45(24): 6639-6642, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33325862

ABSTRACT

Digital micromirror devices (DMDs) have shown their potential in 2-photon imaging and microfabrication as diffractive scanners for femtosecond lasers. However, the scanning range of a DMD-based scanner is decreased by the spatial filter (SF) used to block undesired diffraction orders. Instead of an SF, we present a method of introducing and correcting aberration (ICA) to reduce the effects of these undesired diffraction orders. In ICA, aberrations are introduced by optical elements, and only the aberration of the desired diffraction order is corrected by adding a compensatory phase to the scanning phase. The scanning ranges in the y and z directions can be nearly doubled when the SF is removed. We demonstrate that ICA can be conveniently applied to a previously constructed DMD-based 2-photon microscope, and the field of view can be extended at different axial positions.

10.
Opt Express ; 28(20): 29904-29917, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114879

ABSTRACT

Large aberrations are induced by non-collimated light when the convergence or divergence of the incident beam on the back-pupil plane of the objective lens is adjusted for 3D non-inertial scanning. These aberrations significantly degrade the focus quality and decrease the peak intensity of the femtosecond laser focal spot. Here, we describe an aberration-corrected 3D non-inertial scanning method for femtosecond lasers based on a digital micromirror device (DMD) that is used for both beam scanning and aberration correction. An imaging setup is used to detect the focal spot in the 3D space, and an iterative optimization algorithm is used to optimize the focal spot. We demonstrate the application of our proposed approach in two-photon imaging. With correction for the 200-µm out-of-focal plane, the optical axial resolution improves from 7.67 to 3.25 µm, and the intensity of the fluorescence signal exhibits an almost fivefold improvement when a 40× objective lens is used. This aberration-corrected 3D non-inertial scanning method for femtosecond lasers offers a new approach for a variety of potential applications, including nonlinear optical imaging, microfabrication, and optical storage.

11.
Plant Physiol Biochem ; 142: 490-499, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31442880

ABSTRACT

ICE1 (inducer of CBF expression 1) encodes a typical MYC-like basic helix-loop- helix (bHLH) transcription factor that acts as a pivotal component in the cold signalling pathway. In this study, DlICE1, a novel ICE1-like gene, was isolated from the southern subtropical fruit tree longan (Dimocarpus longan Lour.). DlICE1 encodes a nuclear protein with a highly conserved bHLH domain. DlICE1 expression was slightly upregulated under cold stress. Overexpression of DlICE1 in Arabidopsis conferred enhanced cold tolerance via increased proline content, decreased ion leakage, and reduced malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation. Expression of the ICE1-CBF cold signalling pathway genes, including AtCBF1/2/3 and cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47 and AtKIN1), was also significantly higher in DlICE1-overexpressing lines than in wild-type (WT) plants under cold stress. In conclusion, these findings indicate that DlICE1 is a member of the bHLH gene family and positively regulates cold tolerance in D. longan.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Sapindaceae/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Cloning, Molecular , Cold-Shock Response , Gene Expression Regulation, Plant , Genes, Plant/physiology , Malondialdehyde/metabolism , Plant Proteins/metabolism , Plant Proteins/physiology , Plants, Genetically Modified , Proline/metabolism , Reactive Oxygen Species/metabolism , Sapindaceae/physiology , Sequence Analysis, DNA
12.
Opt Lett ; 44(4): 987-990, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768042

ABSTRACT

We propose a method to achieve high-resolution femtosecond laser beam shaping (HR-FLBS) via digital holography based on a digital mirror device (DMD) and optimized optical design. By programming the hologram on the DMD, we captured several patterns such as light spots, decorated letters of "HUST" (Huazhong University of Science and Technology), and a series of concentric annuli whose fine structure approaches the optical diffraction limit. The experimental results confirm that the proposed method can shape the amplitude and phase of a femtosecond laser arbitrarily with high resolution.

13.
J Biophotonics ; 12(4): e201800249, 2019 04.
Article in English | MEDLINE | ID: mdl-30417571

ABSTRACT

Nucleic acids of intact biological tissues are rich in biological information. Whole-mount in situ hybridization is a powerful technique to mine the wealth of data contained in DNAs or RNAs, especially mRNAs. However, there are no simple, rapid approaches to precisely locate mRNAs in whole-mount tissues such as intact brains. By combining the penetration procedures of iDISCO with the signal amplification approach termed hybridization chain reaction, we herein developed a method for whole-brain in situ hybridization at cellular resolution. Based on fluorescence tomography instead of tissue clearing, this method provides a simple, rapid way to precisely locate mRNAs in the whole brain with cytoarchitectonic landmarks. As a proof of principle, we investigated the exact distribution of Cre mRNA in a Thy1-Cre mouse brain. We found high levels of Cre mRNA in most regions of the subcortical nuclei and the brain stem but comparatively low levels in major areas of the cerebral cortex. This method may have broad applications in studies of RNA function and its relations with diseases.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , In Situ Hybridization/methods , Tomography, Optical , Animals , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
ISA Trans ; 84: 128-141, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30316573

ABSTRACT

This paper proposes a dynamic path planning and trajectory tracking algorithm for an autonomous satellite, released from the space station, to get to the desired position for performing space tasks. The complex construction of the space station results in the presence of a geometric channel constraint for the obstacles avoidance. In addition, a three dimension B-spline template with minimizing the curvature of the path is designed, which could guarantee the continuity of the curvature to make the trajectory smooth and avoid the satellite from stopping at discontinuities waypoints. Then, the reference states and inputs are solved by a new projection method, which provides a foundation for the subsequent trajectory tracking. Subsequently, a finite horizon model predictive control method is constructed for the path tracking. The benefits of this approach are to take constraints into consideration, and to get optimal performance by minimizing the fuel consumption compared with other tracking controllers. The closed-loop stability is guaranteed by the feedback controller, terminal penalty, and a newly terminal constraint set. In simulation experiments, results illustrate the effectiveness and practicality of the algorithm.

15.
Opt Lett ; 43(19): 4598-4601, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272692

ABSTRACT

The two-photon microscope is a powerful tool in life science. Conventional two-photon microscopy can image only a plane of a particular axial position at a time. Axial scanning can get the volumetric information, but it gets signals from different axial positions serially, which means that the exposure time at every plane is limited. Here we demonstrate a novel method, to the best of our knowledge, that can simultaneously record images from two planes at different xyz positions. The demultiplexing of the signal is realized using a confocal strategy. The experimental results show that it can be used for simultaneous two-photon imaging at two focal planes with little cross talk.

16.
ISA Trans ; 73: 54-65, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29291947

ABSTRACT

This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy.

17.
IEEE Trans Neural Netw Learn Syst ; 29(6): 2419-2428, 2018 06.
Article in English | MEDLINE | ID: mdl-28489555

ABSTRACT

This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

18.
ISA Trans ; 70: 173-186, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28789773

ABSTRACT

The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control.

19.
Biomed Opt Express ; 8(12): 5767-5775, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29296503

ABSTRACT

To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 µm, 0.47µm, and 0.59 µm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections.

20.
ISA Trans ; 61: 87-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26775087

ABSTRACT

Study results of developing control system for spacecraft formation proximity operations between a target and a chaser are presented. In particular, a coupled model using dual quaternion is employed to describe the proximity problem of spacecraft formation, and a nonlinear adaptive fault-tolerant feedback control law is developed to enable the chaser spacecraft to track the position and attitude of the target even though its actuator occurs fault. Multiple-task capability of the proposed control system is further demonstrated in the presence of disturbances and parametric uncertainties as well. In addition, the practical finite-time stability feature of the closed-loop system is guaranteed theoretically under the designed control law. Numerical simulation of the proposed method is presented to demonstrate the advantages with respect to interference suppression, fast tracking, fault tolerant and practical finite-time stability.

SELECTION OF CITATIONS
SEARCH DETAIL