Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Quant Imaging Med Surg ; 14(4): 2774-2787, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617153

ABSTRACT

Background: Magnetic resonance imaging (MRI) is a primary non-invasive imaging modality for tumor segmentation, leveraging its exceptional soft tissue contrast and high resolution. Current segmentation methods typically focus on structural MRI, such as T1-weighted post-contrast-enhanced or fluid-attenuated inversion recovery (FLAIR) sequences. However, these methods overlook the blood perfusion and hemodynamic properties of tumors, readily derived from dynamic susceptibility contrast (DSC) enhanced MRI. This study introduces a novel hybrid method combining density-based analysis of hemodynamic properties in time-dependent perfusion imaging with deep learning spatial segmentation techniques to enhance tumor segmentation. Methods: First, a U-Net convolutional neural network (CNN) is employed on structural images to delineate a region of interest (ROI). Subsequently, Hierarchical Density-Based Scans (HDBScan) are employed within the ROI to augment segmentation by exploring intratumoral hemodynamic heterogeneity through the investigation of tumor time course profiles unveiled in DSC MRI. Results: The approach was tested and evaluated using a cohort of 513 patients from the open-source University of Pennsylvania glioblastoma database (UPENN-GBM) dataset, achieving a 74.83% Intersection over Union (IoU) score when compared to structural-only segmentation. The algorithm also exhibited increased precision and localized predictions of heightened segmentation boundary complexity, resulting in a 146.92% increase in contour complexity (ICC) compared to the reference standard provided by the UPENN-GBM dataset. Importantly, segmenting tumors with the developed new approach uncovered a negative correlation of the tumor volume with the scores in the Karnofsky Performance Scale (KPS) clinically used for assessing the functional status of patients (-0.309), which is not observed with the prevailing segmentation standard. Conclusions: This work demonstrated that including hemodynamic properties of tissues from DSC MRI can improve existing structural or morphological feature-based tumor segmentation techniques with additional information on tumor biology and physiology. This approach can also be applied to other clinical indications that use perfusion MRI for diagnosis or treatment monitoring.

2.
Article in English | MEDLINE | ID: mdl-38684320

ABSTRACT

BACKGROUND AND PURPOSE: The Brain Tumor Reporting and Data System (BT-RADS) is a structured radiology reporting algorithm that was introduced to provide uniformity in post-treatment primary brain tumor follow-up and reporting, but its interrater reliability (IRR) assessment has not been widely studied. Our goal is to evaluate the IRR among neuroradiologists and radiology residents in the use of BT-RADS. MATERIALS AND METHODS: This retrospective study reviewed 103 consecutive MR studies in 98 adult patients previously diagnosed with and treated for primary brain tumor (January 2019 to February 2019). Six readers with varied experience (4 neuroradiologists and 2 radiology residents) independently evaluated each case and assigned a BT-RADS score. Readers were blinded to the original score reports and the reports from other readers. Cases in which at least one neuroradiologist scored differently were subjected to consensus scoring. After the study, a post-hoc reference score was also assigned by 2 readers using future imaging and clinical information previously unavailable to readers. The interrater reliabilities were assessed using Gwet's AC2 index with ordinal weights and percent agreement. RESULTS: Of the 98 patients evaluated (median age, 53 years; interquartile range, 41-66 years), 53% were males. The most common tumor type was astrocytoma (77%) of which 56% were grade 4 glioblastoma. Gwet's index for interrater reliability among all six readers was 0.83 (95% CI: 0.78, 0.87). The Gwet's index for the neuroradiologists' group (0.84 [95% CI: 0.79, 0.89]) was not statistically different from that for the residents' group (0.79 [95% CI: 0.72, 0.86]) (χ2 = 0.85; p = 0.36). All four neuroradiologists agreed on the same BT-RADS score in 57 of the 103 studies, three neuroradiologists agreed in 21 of the 103 studies, and two neuroradiologists agreed in 21 of the 103 studies. Percent agreement between neuroradiologist blinded scores and post-hoc reference scores ranged from 41%-52%. CONCLUSIONS: A very good interrater agreement was found when tumor reports were interpreted by independent blinded readers using BT-RADS criteria. Further study is needed to determine if this high overall agreement can translate into greater consistency in clinical care. ABBREVIATIONS: BI-RADS = Breast Imaging Reporting and Data System; BT-RADS = Brain Tumor Reporting and Data System; IQR = interquartile range; IRR = interrater reliability; NI-RADS = Neck Imaging Reporting and Data System.

3.
Article in English | MEDLINE | ID: mdl-38212059

ABSTRACT

BACKGROUND: With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS: Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS: Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS: Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.

4.
AJNR Am J Neuroradiol ; 44(12): 1411-1417, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38050003

ABSTRACT

BACKGROUND AND PURPOSE: Brain imaging plays an important role in investigating patients with cognitive decline and ruling out secondary causes of dementia. This study compares the diagnostic value of quantitative hippocampal volumes derived from automated volumetric software and structured scoring scales in differentiating Alzheimer disease, mild cognitive impairment, and subjective cognitive decline. MATERIALS AND METHODS: Retrospectively, we reviewed images and medical records of adult patients who underwent MR imaging with a dementia protocol (2018-2021). Patients with postscanning diagnoses of Alzheimer disease, mild cognitive impairment, and subjective cognitive decline based on the International Statistical Classification of Diseases and Related Health Problems, 10th revision, were included. Diagnostic performances of automated normalized total hippocampal volume and structured manually assigned medial temporal atrophy and entorhinal cortical atrophy scores were assessed using multivariate logistic regression and receiver operating characteristic curve analysis. RESULTS: We evaluated 328 patients (Alzheimer disease, n = 118; mild cognitive impairment, n = 172; subjective cognitive decline, n = 38). Patients with Alzheimer disease had lower normalized total hippocampal volume (median, 0.35%), higher medial temporal atrophy (median, 3), and higher entorhinal cortical atrophy (median, 2) scores than those with subjective cognitive decline (P < .001) and mild cognitive impairment (P < .001). For discriminating Alzheimer disease from subjective cognitive decline, an entorhinal cortical atrophy cutoff value of 2 had a higher specificity (87%) compared with normalized total hippocampal volume (74%) and medial temporal atrophy (66%), but a lower sensitivity (69%) than normalized total hippocampal volume (84%) and medial temporal atrophy (84%). In discriminating Alzheimer disease from mild cognitive impairment, an entorhinal cortical atrophy cutoff value of 3 had a specificity (66%), similar to that of normalized total hippocampal volume (67%) but higher than medial temporal atrophy (54%), and its sensitivity (69%) was also similar to that of normalized total hippocampal volume (71%) but lower than that of medial temporal atrophy (84%). CONCLUSIONS: Entorhinal cortical atrophy and medial temporal atrophy may be useful adjuncts in discriminating Alzheimer disease from subjective cognitive decline, with reduced cost and implementation challenges compared with automated volumetric software.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adult , Humans , Alzheimer Disease/pathology , Atrophy/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Entorhinal Cortex/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies
5.
Magn Reson Med ; 90(6): 2400-2410, 2023 12.
Article in English | MEDLINE | ID: mdl-37526017

ABSTRACT

PURPOSE: To integrate 3D CEST EPI with an unevenly segmented RF irradiation module and preliminarily demonstrate it in the clinical setting. METHODS: A CEST MRI with unevenly segmented RF saturation was implemented, including a long primary RF saturation to induce the steady-state CEST effect, maintained with repetitive short secondary RF irradiation between readouts. This configuration reduces relaxation-induced blur artifacts during acquisition, allowing fast 3D spatial coverage. Numerical simulations were performed to select parameters such as flip angle (FA), short RF saturation duration (Ts2), and the number of readout segments. The sequence was validated experimentally with data from a phantom, healthy volunteers, and a brain tumor patient. RESULTS: Based on the numerical simulation and l-carnosine gel phantom experiment, FA, Ts2, and the number of segments were set to 20°, 0.3 s, and the range from 4 to 8, respectively. The proposed method minimized signal modulation in the human brain images in the kz direction during the acquisition and provided the blur artifacts-free CEST contrast over the whole volume. Additionally, the CEST contrast in the tumor tissue region is higher than in the contralateral normal tissue region. CONCLUSIONS: It is feasible to implement a highly accelerated 3D EPI CEST imaging with unevenly segmented RF irradiation.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Feasibility Studies , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Phantoms, Imaging
6.
Interv Neuroradiol ; : 15910199231176310, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37226428

ABSTRACT

BACKGROUND: As compared to single-phase CTA (sCTA), multi-phase CTA (mCTA) has been shown to more accurately estimate collateral flow in acute ischemic stroke (AIS). We sought to determine the characterization of poor collaterals across the three different phases of the mCTA. We also attempted to establish the optimal arterio-venous contrast timing parameters on sCTA that would prevent false positive reads of poor collateral status. METHODS: We retrospectively screened consecutive patients admitted for possible thrombectomy from February 2018 to June 2019. Only cases with intracranial internal carotid artery (ICA) or main trunk of the middle cerebral artery (MCA) occlusion and both baseline mCTA and CT Perfusion available were included. Mean Hounsfield units (HU) of torcula and torcula/patent ICA ratio were used for the arterio-venous timing analysis. RESULTS: Of the 105 patients included, 35 (34%) received IV-tPA treatment and 65 (61.9%) underwent mechanical thrombectomy. A total of 20 patients (19%) had poor collaterals on the third-phase CTA (ground-truth). The first-phase CTA often underestimated collateral score (37/105 [35%], p < 0.01), however there were no significant differences across the second- and third-phases (5/105[5%], p = 0.06. Venous opacification Youden's J point for identifying suboptimal sCTAs was found to be 207.9HU in the torcula (65% sensitivity,65% specificity) and 66.74% for torcula/patent ICA ratio (51% sensitivity,73% specificity). CONCLUSION: A dual-phase CTA is significantly similar to a mCTA assessment of collateral score and may be applied at community-based centers. Absolute or relative thresholds for torcula opacification may be used to identify poor bolus-scan timing thus preventing erroneous assumptions of poor collaterals on sCTA.

7.
Tomography ; 9(2): 859-870, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37104141

ABSTRACT

Multidisciplinary tumor boards (TB) are an essential part of brain tumor care, but quantifying the impact of imaging on patient management is challenging due to treatment complexity and a lack of quantitative outcome measures. This work uses a structured reporting system for classifying brain tumor MRIs, the brain tumor reporting and data system (BT-RADS), in a TB setting to prospectively assess the impact of imaging review on patient management. Published criteria were used to prospectively assign three separate BT-RADS scores (an initial radiology report, secondary TB presenter review, and TB consensus) to brain MRIs reviewed at an adult brain TB. Clinical recommendations at TB were noted and management changes within 90 days after TB were determined by chart review. In total, 212 MRIs in 130 patients (median age = 57 years) were reviewed. Agreement was 82.2% between report and presenter, 79.0% between report and consensus, and 90.1% between presenter and consensus. Rates of management change increased with increasing BT-RADS scores (0-3.1%, 1a-0%, 1b-66.7%, 2-8.3%, 3a-38.5%, 3b-55.9, 3c-92.0%, and 4-95.6%). Of 184 (86.8%) cases with clinical follow-up within 90 days after the tumor board, 155 (84.2%) of the recommendations were implemented. Structured scoring of MRIs provides a quantitative way to assess rates of agreement interpretation alongside how often management changes are recommended and implemented in a TB setting.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Adult , Humans , Middle Aged , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain
8.
J Digit Imaging ; 36(3): 1189-1197, 2023 06.
Article in English | MEDLINE | ID: mdl-36596936

ABSTRACT

In recent years, the quantity and complexity of medical imaging acquisition and processing have increased tremendously. The explosion in volume and need for advanced imaging analysis have led to the creation of numerous software programs, which have begun to be incorporated into clinical practice for indications such as automated stroke assessment, brain tumor perfusion processing, and hippocampal volume analysis. Despite these advances, there remains a need for specialized, custom-built software for advanced algorithms and new areas of research that is not widely available or adequately integrated in these "out-of-the-box" solutions. The purpose of this paper is to describe the implementation of an image-processing pipeline that is versatile and simple to create, which allows for rapid prototyping of image analysis algorithms and subsequent testing in a clinical environment. This pipeline uses a combination of Orthanc server, custom MATLAB code, and publicly available FMRIB Software Library and RestNeuMap tools to automatically receive and analyze resting-state functional MRI data collected from a custom filter on the MR scanner output. The processed files are then sent directly to Picture Archiving and Communications System (PACS) without the need for user input. This initial experience can serve as a framework for those interested in simple implementation of an automated pipeline customized to clinical needs.


Subject(s)
Magnetic Resonance Imaging , Radiology Information Systems , Humans , Software , Algorithms , Image Processing, Computer-Assisted/methods
9.
J Digit Imaging ; 36(2): 450-457, 2023 04.
Article in English | MEDLINE | ID: mdl-36352165

ABSTRACT

Automated co-registration and subtraction techniques have been shown to be useful in the assessment of longitudinal changes in multiple sclerosis (MS) lesion burden, but the majority depend on T2-fluid-attenuated inversion recovery sequences. We aimed to investigate the use of a novel automated temporal color complement imaging (CCI) map overlapped on 3D double inversion recovery (DIR), and to assess its diagnostic performance for detecting disease progression in patients with multiple sclerosis (MS) as compared to standard review of serial 3D DIR images. We developed a fully automated system that co-registers and compares baseline to follow-up 3D DIR images and outputs a pseudo-color RGB map in which red pixels indicate increased intensity values in the follow-up image (i.e., progression; new/enlarging lesion), blue-green pixels represent decreased intensity values (i.e., disappearing/shrinking lesion), and gray-scale pixels reflect unchanged intensity values. Three neuroradiologists blinded to clinical information independently reviewed each patient using standard DIR images alone and using CCI maps based on DIR images at two separate exams. Seventy-six follow-up examinations from 60 consecutive MS patients who underwent standard 3 T MR brain MS protocol that included 3D DIR were included. Median cohort age was 38.5 years, with 46 women, 59 relapsing-remitting type MS, and median follow-up interval of 250 days (interquartile range: 196-394 days). Lesion progression was detected in 67.1% of cases using CCI review versus 22.4% using standard review, with a total of 182 new or enlarged lesions using CCI review versus 28 using standard review. There was a statistically significant difference between the two methods in the rate of all progressive lesions (P < 0.001, McNemar's test) as well as cortical progressive lesions (P < 0.001). Automated CCI maps using co-registered serial 3D DIR, compared to standard review of 3D DIR alone, increased detection rate of MS lesion progression in patients undergoing clinical brain MRI exam.


Subject(s)
Multiple Sclerosis , Humans , Female , Infant , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Image Enhancement , Neuroimaging
10.
J Stroke Cerebrovasc Dis ; 31(9): 106644, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35849917

ABSTRACT

OBJECTIVES: Diffusion weighted imaging hyperintensity (DWI-H) has been described in the retina and optic nerve during acute central retinal artery occlusion (CRAO). We aimed to determine whether DWI-H can be accurately identified on standard brain magnetic resonance imaging (MRI) in non-arteritic CRAO patients at two tertiary academic centers. MATERIALS AND METHODS: Retrospective cross-sectional study that included all consecutive adult patients with confirmed acute non-arteritic CRAO and brain MRI performed within 14 days of CRAO. At each center, two neuroradiologists masked to patient clinical data reviewed each MRI for DWI-H in the retina and optic nerve, first independently then together. Statistical analysis for inter-rater reliability and correlation with clinical data was performed. RESULTS: We included 204 patients [mean age 67.9±14.6 years; 47.5% females; median time from CRAO to MRI 1 day (IQR 1-4.3); 1.5 T in 127/204 (62.3%) and 3.0 T in 77/204 (37.7%)]. Inter-rater reliability varied between centers (κ = 0.27 vs. κ = 0.65) and was better for retinal DWI-H. Miss and error rates significantly differed between neuroradiologists at each center. After consensus review, DWI-H was identified in 87/204 (42.6%) patients [miss rate 117/204 (57.4%) and error rate 11/87 (12.6%)]. Significantly more patients without DWI-H had good visual acuity at follow-up (p = 0.038). CONCLUSIONS: In this real-world case series, differences in agreement and interpretation accuracy among neuroradiologists limited the role of DWI-H in diagnosing acute CRAO on standard MRI. DWI-H was identified in 42.6% of patients and was more accurately detected in the retina than in the optic nerve. Further studies are needed with standardized novel MRI protocols.


Subject(s)
Retinal Artery Occlusion , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Optic Nerve/diagnostic imaging , Reproducibility of Results , Retina/pathology , Retinal Artery Occlusion/diagnostic imaging , Retinal Artery Occlusion/therapy , Retrospective Studies
11.
Front Neurol ; 13: 780896, 2022.
Article in English | MEDLINE | ID: mdl-35392638

ABSTRACT

The purpose of this study was to assess spatially remote effects of hemodynamic impairment on functional network topology contralateral to unilateral anterior circulation steno-occlusive disease (SOD) using resting-state blood oxygen level-dependent (BOLD) imaging, and to investigate the relationships between network connectivity and cerebrovascular reactivity (CVR), a measure of hemodynamic stress. Twenty patients with unilateral, chronic anterior circulation SOD and 20 age-matched healthy controls underwent resting-state BOLD imaging. Five-minute standardized baseline BOLD acquisition was followed by acetazolamide infusion to measure CVR. The BOLD baseline was used to analyze network connectivity contralateral to the diseased hemispheres of SOD patients. Compared to healthy controls, reduced network degree (z-score = -1.158 ± 1.217, P < 0.001, false discovery rate (FDR) corrected), local efficiency (z-score = -1.213 ± 1.120, P < 0.001, FDR corrected), global efficiency (z-score = -1.346 ± 1.119, P < 0.001, FDR corrected), and enhanced modularity (z-score = 1.000 ± 1.205, P = 0.002, FDR corrected) were observed in the contralateral, normal hemispheres of SOD patients. Network degree (P = 0.089, FDR corrected; P = 0.027, uncorrected) and nodal efficiency (P = 0.089, FDR corrected; P = 0.045, uncorrected) showed a trend toward a positive association with CVR. The results indicate remote abnormalities in functional connectivity contralateral to the diseased hemispheres in patients with unilateral SOD, despite the absence of macrovascular disease or demonstrable hemodynamic impairment. The clinical impact of remote functional disruptions requires dedicated investigation but may portend far reaching consequence for even putatively unilateral cerebrovascular disease.

12.
J Neuroimaging ; 32(5): 941-946, 2022 09.
Article in English | MEDLINE | ID: mdl-35436024

ABSTRACT

BACKGROUND AND PURPOSE: Diffusion kurtosis imaging (DKI) is an advanced technique more specific to irreversible ischemic injury than conventional diffusion-weighted imaging (DWI). However, its clinical translation has been limited by a long acquisition time and complex postprocessing. METHODS: A fast DKI sequence (3 minutes) was implemented on a 3T MRI (Siemens Trio) and piloted as part of an inpatient brain MRI protocol. Mean kurtosis (MK) and mean diffusivity (MD) maps were postprocessed automatically at the scanner console and sent to the Picture Archiving and Communications System. We retrospectively reviewed consecutive patients in a 5-month period with acute ischemic stroke due to large vessel occlusion. MK and MD of the ischemic infarcts and contralateral normal brain were measured, and lesion volumes were measured in large infarcts using semiautomated segmentation. RESULTS: Twenty-two patients were included in the study (median age 66). The median time from last known well to MRI was 37 hours. MD and MK maps were successfully processed and demonstrated acute infarction in concordance with DWI in all cases. Infarcted regions had higher MK and lower MD compared to contralateral normal-appearing regions. MK lesion volume was significantly smaller than MD volume. CONCLUSION: In this pilot study, we demonstrated the feasibility of incorporating a fast DKI sequence into a clinical MRI protocol. Acute infarcts were depicted on kurtosis maps, and MK lesion volumes were smaller than MD, in accordance with prior works. Future studies are needed to determine the role of DKI in acute stroke treatment selection and prognostication.


Subject(s)
Ischemic Stroke , Aged , Diffusion Magnetic Resonance Imaging/methods , Humans , Infarction , Pilot Projects , Retrospective Studies
13.
Epilepsy Behav ; 130: 108659, 2022 05.
Article in English | MEDLINE | ID: mdl-35339067

ABSTRACT

Outcomes of treating low-grade epilepsy-associated tumors (LEATs) in the temporal lobe with MRI-guided laser interstitial thermal therapy (MRgLITT) remain poorly characterized. This study aimed to compare the safety and effectiveness of treating temporal lobe LEATs with MRgLITT versus open resection in a consecutive single-institution series. We reviewed all adult patients with epilepsy that underwent surgery for temporal lobe LEATs at our institution between 2002 and 2019, during which time we switched from open surgery to MRgLITT. Surgical outcome was categorized by Engel classification at >12mo follow-up and Kaplan-Meir analysis of seizure freedom. We recorded hospital length of stay, adverse events, and available neuropsychological results. Of 14 total patients, 7 underwent 9 open resections, 6 patients underwent MRgLITT alone, and 1 patient underwent an open resection followed by MRgLITT. Baseline group demographics differed and were notable for preoperative duration of epilepsy of 9.0 years (range 1-36) for open resection versus 14.0 years (range 2-34) for MRgLITT. Median length of stay was one day shorter for MRgLITT compared to open resection (p=<.0001). There were no major adverse events in the series, but there were fewer minor adverse events following MRgLITT. At 12mo follow-up, 50% (5/10) of patients undergoing open resection and 57% (4/7) of patients undergoing MRgLITT were free of disabling seizures (Engel I). When comparing patients who underwent similar procedures in the dominant temporal lobe, patients undergoing MRgLITT had fewer and milder material-specific neuropsychological declines than patients undergoing open resections. In this small series, MRgLITT was comparably safe and effective relative to open resection of temporal lobe LEATs.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Laser Therapy , Neoplasms , Adult , Drug Resistant Epilepsy/surgery , Epilepsy/etiology , Epilepsy/pathology , Epilepsy/surgery , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/surgery , Humans , Laser Therapy/methods , Lasers , Temporal Lobe/pathology , Temporal Lobe/surgery , Treatment Outcome
14.
Curr Probl Diagn Radiol ; 51(4): 529-533, 2022.
Article in English | MEDLINE | ID: mdl-34955284

ABSTRACT

RATIONALE AND OBJECTIVES: We aimed to assess early COVID-19 pandemic-associated changes in brain MRI examination frequency and acuity of imaging findings acuity. METHODS: Using a natural language processing model, we retrospectively categorized reported findings of 12,346 brain MRI examinations performed during 6-month pre-pandemic and early pandemic time periods across a large metropolitan health system into 3 acuity levels: (1) normal or near normal; (2) incidental or chronic findings not requiring a management change; and (3) new or progressive findings requiring a management change. Brain MRI frequency and imaging finding acuity level were compared over time. RESULTS: Between March and August of 2019 (pre-pandemic) and 2020 (early pandemic), our health system brain MRI examination volumes decreased 17.0% (6745 vs 5601). Comparing calendar-matched 6-month periods, the proportion of higher acuity findings increased significantly (P< 0.001) from pre-pandemic (22.5%, 43.6% and 34.0% in acuity level 1, 2, and 3, respectively) to early pandemic periods (19.1%, 40.9%, and 40.1%). During the second 3 months of the early pandemic period, as MRI volumes recovered to near baseline, the proportion of higher acuity findings remained high (42.6% vs 34.1%) compared with a similar pre-pandemic period. In a multivariable analysis, Black (B coefficient, 0.16) and underinsured population (B coefficient, 0.33) presented with higher acuity findings (P< 0.05). CONCLUSIONS: As the volume of brain MRI examinations decreased during the early COVID-19 pandemic, the relative proportion of examinations with higher acuity findings increased significantly. Pandemic-related changes in patient outcomes related to reduced imaging access merits further attention.


Subject(s)
COVID-19 , Pandemics , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Natural Language Processing , Retrospective Studies , SARS-CoV-2
15.
Front Neurol ; 12: 779495, 2021.
Article in English | MEDLINE | ID: mdl-34956059

ABSTRACT

Objective: To evaluate declarative memory outcomes in medically refractory epilepsy patients who underwent either a highly selective laser ablation of the amygdalohippocampal complex or a conventional open temporal lobe resection. Methods: Post-operative change scores were examined for verbal memory outcome in epilepsy patients who underwent stereotactic laser amygdalohippocampotomy (SLAH: n = 40) or open resection procedures (n = 40) using both reliable change index (RCI) scores and a 1-SD change metric. Results: Using RCI scores, patients undergoing open resection (12/40, 30.0%) were more likely to decline on verbal memory than those undergoing SLAH (2/40 [5.0%], p = 0.0064, Fisher's exact test). Patients with language dominant procedures were much more likely to experience a significant verbal memory decline following open resection (9/19 [47.4%]) compared to laser ablation (2/19 [10.5%], p = 0.0293, Fisher's exact test). 1 SD verbal memory decline frequently occurred in the open resection sample of language dominant temporal lobe patients with mesial temporal sclerosis (8/10 [80.0%]), although it rarely occurred in such patients after SLAH (2/14, 14.3%) (p = 0.0027, Fisher's exact test). Memory improvement occurred significantly more frequently following SLAH than after open resection. Interpretation: These findings suggest that while verbal memory function can decline after laser ablation of the amygdalohippocampal complex, it is better preserved when compared to open temporal lobe resection. Our findings also highlight that the dominant hippocampus is not uniquely responsible for verbal memory. While this is at odds with our simple and common heuristic of the hippocampus in memory, it supports the findings of non-human primate studies showing that memory depends on broader medial and lateral TL regions.

16.
Semin Ultrasound CT MR ; 42(5): 452-462, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34537114

ABSTRACT

Magnetic resonance (MR) is a powerful and versatile technique that offers much more beyond conventional anatomic imaging and has the potential of probing in vivo metabolism. Although MR spectroscopy (MRS) predates clinical MR imaging (MRI), its clinical application has been limited by technical and practical challenges. Other MR techniques actively being developed for in vivo metabolic imaging include sodium concentration imaging and chemical exchange saturation transfer. This article will review some of the practical aspects of MRS in neuroimaging, introduce sodium MRI and chemical exchange saturation transfer MRI, and highlight some of their emerging clinical applications.


Subject(s)
Magnetic Resonance Imaging , Sodium , Humans , Magnetic Resonance Spectroscopy , Neuroimaging
17.
AJR Am J Roentgenol ; 217(6): 1401-1416, 2021 12.
Article in English | MEDLINE | ID: mdl-34259036

ABSTRACT

Recent successful trials of thrombectomy launched a shift to imaging-based patient selection for stroke intervention. Many centers have adopted CT perfusion imaging (CTP) as a routine part of stroke workflow, and the demand for emergent CTP interpretation is growing. Fully automated CTP postprocessing software that rapidly generates standardized color-coded CTP summary maps with minimal user input and with easy accessibility of the software output is increasingly being adopted. Such automated postprocessing greatly streamlines clinical workflow and CTP interpretation for radiologists and other frontline physicians. However, the straightforward interface overshadows the computational complexity of the underlying postprocessing workflow, which, if not carefully examined, predisposes the interpreting physician to diagnostic errors. Using case examples, this article aims to familiarize the general radiologist with interpreting automated CTP software data output in the context of contemporary stroke management, providing a discussion of CTP acquisition and postprocessing, a stepwise guide for CTP quality assurance and troubleshooting, and a framework for avoiding clinically significant pitfalls of CTP interpretation in commonly encountered clinical scenarios. Interpreting radiologists should apply the outlined approach for quality assurance and develop a comprehensive search pattern for the identified pitfalls, to ensure accurate CTP interpretation and optimize patient selection for reperfusion.


Subject(s)
Computed Tomography Angiography/methods , Perfusion Imaging/methods , Quality Assurance, Health Care/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Triage/methods , Brain/diagnostic imaging , Humans , Ischemic Stroke , Practice Guidelines as Topic
18.
Neurosurgery ; 89(4): 635-644, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34270738

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRgLITT) has been used successfully to treat epileptogenic cortical cerebral cavernous malformations (CCM). It is unclear whether MRgLITT would be as feasible or safe for deep CCMs. OBJECTIVE: To describe our experience with MRgLITT for symptomatic deep CCMs. METHODS: Patients' records were reviewed retrospectively. MRgLITT was carried out using a commercially available system in an interventional MRI suite with efforts to protect adjacent brain structures. Immediate postoperative imaging was used to judge ablation adequacy. Delayed postoperative MRI was used to measure lesion volume changes during follow-up. RESULTS: Four patients with CCM in the thalamus, putamen, midbrain, or subthalamus presented with persistent and disabling neurological symptoms. A total of 2 patients presented with disabling headaches and sensory disturbances and 2 with recurrent symptomatic hemorrhages, of which 1 had familial CCM. Patients were considered by vascular neurosurgeons to be poor candidates for open surgery or had refused it. Multiple trajectories were used in most cases. Adverse events included device malfunction with leakage of saline causing transient mass effect in one patient, and asymptomatic tract hemorrhage in another. One patient suffered an expected mild but persistent exacerbation of baseline deficits. All patients showed improvement from a previously aggressive clinical course with lesion volume decreased by 20% to 73% in follow-up. CONCLUSION: MRgLITT is feasible in the treatment of symptomatic deep CCM but may carry a high risk of complications without the benefit of definitive resection. We recommend cautious patient selection, low laser power settings, and conservative temperature monitoring in surrounding brain parenchyma.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Laser Therapy , Feasibility Studies , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , Hemangioma, Cavernous, Central Nervous System/surgery , Humans , Lasers , Magnetic Resonance Imaging , Morbidity , Retrospective Studies
19.
Radiol Clin North Am ; 59(3): 335-347, 2021 May.
Article in English | MEDLINE | ID: mdl-33926681

ABSTRACT

Diffusion MR imaging exploits the diffusion properties of water to generate contrast between normal tissue and pathology. Diffusion is an essential component of nearly all brain tumor MR imaging examinations. This review covers the important clinical applications of diffusion weighted imaging in the pretreatment diagnosis and grading of brain tumors and assessment of treatment response. Diffusion imaging improves the accuracy of identifying treatment-related effects that may mimic tumor improvement or worsening. Fiber tractography models of eloquent white matter pathways are generated using diffusion tensor imaging. A practical and concise tractography guide is provided for anyone new to preoperative surgical mapping.


Subject(s)
Brain Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Postoperative Care/methods , Preoperative Care/methods , Brain/diagnostic imaging , Brain Neoplasms/surgery , Diffusion Tensor Imaging/methods , Humans
20.
AJR Am J Roentgenol ; 216(5): 1378-1386, 2021 05.
Article in English | MEDLINE | ID: mdl-33729880

ABSTRACT

OBJECTIVE. This article aimed to assess changing use of brain imaging tests among patients with Alzheimer disease and vascular dementia who visited U.S. emergency departments (EDs) between 2006 and 2014. MATERIALS AND METHODS. Using the largest publicly available all-payer ED database, the Nationwide Emergency Department Sample, we identified a weighted cohort of 427,705 individuals with Alzheimer disease and 33,743 individuals with vascular dementia who visited U.S. EDs between 2006 and 2014. Logistic regression analyses were performed to identify factors associated with use. RESULTS. Between 2006 and 2014, ED visits among patients with Alzheimer disease and vascular dementia declined by 24.7% and 20.3%, respectively. However, there was a significant increase in utilization rates of head CT (from 4.4% to 11.1% in patients with Alzheimer disease and from 1.5% to 2.9% in patients with vascular dementia) and brain MRI (from 0.04% to 0.5% in patients with Alzheimer disease and 0.0% to 0.1% in those with vascular dementia) in the same time period. Among patients with Alzheimer disease, age, median income in patient ZIP code, day of the week of the ED visit, hospital teaching status, and hospital geographic region were significant predictors of imaging use. Among patients with vascular dementia, insurance type and hospital classification (urban vs rural) were significant predictors of imaging use. CONCLUSION. Despite declining ED visits, ED brain imaging in patients with Alzheimer disease and vascular dementia has increased. Various patient-specific and hospital-specific factors contribute to differential utilization rates.


Subject(s)
Dementia/diagnostic imaging , Emergency Service, Hospital/statistics & numerical data , Neuroimaging/methods , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cohort Studies , Female , Humans , Male , Retrospective Studies , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...