Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Polymers (Basel) ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794621

ABSTRACT

Bacterial infection is a common complication in bone defect surgery, in which infection by clinically resistant bacteria has been a challenge for the medical community. Given this emerging problem, the discovery of novel natural-type inhibitors of drug-resistant bacteria has become imperative. Brucine, present in the traditional Chinese herb Strychnine semen, is reported to exert analgesic and anti-inflammatory effects. Brucine's clinical application was limited because of its water solubility. We extracted high-purity BS by employing reflux extraction and crystallization, greatly improved its solubility, and evaluated its antimicrobial activity against E. coli and S. aureus. Importantly, we found that BS inhibited the drug-resistant strains significantly better than standard strains and achieved sterilization by disrupting the bacterial cell wall. Considering the safety concerns associated with the narrow therapeutic window of BS, a 3D BS-PLLA/PGA bone scaffold system was constructed with SLS technology and tested for its performance, bacteriostatic behaviors, and biocompatibility. The results have shown that the drug-loaded bone scaffolds had not only long-term, slow-controlled release with good cytocompatibility but also demonstrated significant antimicrobial activity in antimicrobial testing. The above results indicated that BS may be a potential drug candidate for the treatment of antibiotic-resistant bacterial infections and that scaffolds with enhanced antibacterial activity and mechanical properties may have potential applications in bone tissue engineering.

2.
Dalton Trans ; 53(20): 8750-8755, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712563

ABSTRACT

Direct ethanol fuel cells (DEFCs), which have been widely recognized as nontoxic and green energy conversion devices, show attractive application prospects for liquid hydrogen-carriers, due to the higher specific energy and lower toxicity of ethanol. Pt-based catalysts are widely used in DEFCs, while their poor poisoning resistance highlights the importance of composition and structure optimization. Herein, we synthesized a series of reduced graphene oxide supported ternary alloy AuxPt1-xCu3/rGO (x = 0-1) catalysts with excellent ethanol oxidation performance and a composition-dependent volcano plot trend of the ordering degree was observed and rationalized. The highest Pt-normalized mass activity of Au0.8Pt0.2Cu3/rGO is attributed to the optimized CO binding energy according to DFT calculations. This work not only provides an efficient EOR catalyst based on ordered alloys AuxPt1-xCu3 (x = 0-1), but also offers valuable insight into the role of a third metal in tuning the structure and function of alloys.

3.
Transl Lung Cancer Res ; 13(4): 901-929, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38736488

ABSTRACT

Background: Whether stage T1N2-3M0 non-small cell lung cancer (NSCLC) patients could benefit from surgery and the optimal surgical procedure have remained controversial and unclear. This study aimed to investigate whether stage T1N2-3M0 NSCLC can benefit from different surgery types and develop a tool for survival prediction. Methods: The Surveillance, Epidemiology, and End Results (SEER) database was used to identify patients diagnosed with stage T1N2-3M0 NSCLC between 2000 and 2015. A 1:1 propensity score-matched (PSM) analysis was used to balance the distribution of clinical characteristics. Survival analyses were performed by using the Kaplan-Meier (KM) curves and Cox proportional hazards regression. All patients were randomly split at a ratio of 7:3 into training and validation cohorts. The nomogram was constructed by integrating all independent predictors for overall survival (OS) and cancer-specific survival (CSS). The model's performance was evaluated by discrimination, calibration ability, and risk stratification ability. Results: A total of 4,671 patients were enrolled. After 1:1 PSM, the distribution proportions of clinical characteristics in 1,146 patients were balanced (all P>0.05). The non-surgical approach was associated with worse survival compared with sublobectomy and lobectomy in the unmatched and matched cohorts. The multivariate Cox analysis showed that sublobectomy and lobectomy were both related to better OS and CSS rates compared with no surgery (P<0.001). Moreover, the results of subgroup analyses based on age, N stage, and radiotherapy or chemotherapy strategy were consistent. A total of 801 patients were included in the training cohort and 345 cases constituted the validation cohort. The nomogram constructed for the 1-, 3-, and 5-year OS and CSS prediction showed good discrimination, performance, and calibration both in the training and validation sets. Significant distinctions in survival curves between different risk groups stratified by prognostic scores were also observed (all P<0.001). Conclusions: Stage T1N2-3M0 NSCLC patients could benefit from sublobectomy or lobectomy, and lobectomy provides better survival benefits. We developed and validated nomograms, which could offer clinicians instructions for strategy making.

4.
Plant Cell Physiol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619117

ABSTRACT

Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. VdPHB1 protein is localized in the intercellular space of cotton plants. Knockout VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene silenced cotton plants were more sensitive to V. dahliae with reduced expressions of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein were concurrently repressed when VdPHB1 protein expressed during infection. In summary, these results revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.

5.
Cell Metab ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38569557

ABSTRACT

Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.

6.
Curr Opin Genet Dev ; 86: 102195, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643591

ABSTRACT

Adenosine-to-inosine RNA editing, catalyzed by the enzymes ADAR1 and ADAR2, stands as a pervasive RNA modification. A primary function of ADAR1-mediated RNA editing lies in labeling endogenous double-stranded RNAs (dsRNAs) as 'self', thereby averting their potential to activate innate immune responses. Recent findings have highlighted additional roles of ADAR1, independent of RNA editing, that are crucial for immune control. Here, we focus on recent progress in understanding ADAR1's RNA editing-dependent and -independent roles in immune control. We describe how ADAR1 regulates various dsRNA innate immune receptors through distinct mechanisms. Furthermore, we discuss the implications of ADAR1 and RNA editing in diseases, including autoimmune diseases and cancers.

7.
BMC Pulm Med ; 24(1): 203, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658883

ABSTRACT

BACKGROUND: Bronchial arterial embolization (BAE) has been accepted as an effective treatment for bronchiectasis-related hemoptysis. However, rare clinical trials compare different sizes of specific embolic agents. This study aims to evaluate whether different Embosphere microsphere sizes change the outcome of BAE. METHODS: A retrospective review was conducted on consecutive patients with bronchiectatic hemoptysis who were scheduled to undergo BAE treatment during a period from January 2018 to December 2022. The patients received BAE using microspheres of different sizes: group A patients were treated with 500-750 µm microspheres, and group B patients were treated with 700-900 µm microspheres. The cost of embolic microspheres (Chinese Yuan, CNY), duration of hospitalization, complications, and hemoptysis-free survival were compared between patients in group A and those in group B. A Cox proportional hazards regression model was used to identify predictors of recurrent hemoptysis. RESULTS: Median follow-up was 30.2 months (range, 20.3-56.5 months). The final analysis included a total of 112 patients (49-77 years of age; 45 men). The patients were divided into two groups: group A (N = 68), which received 500-750 µm Embosphere microspheres, and group B (N = 44), which received 700-900 µm Embosphere microspheres. Except for the cost of embolic microspheres(group A,5314.8 + 1301.5 CNY; group B, 3644.5 + 1192.3 CNY; p = 0.042), there were no statistically significant differences in duration of hospitalization (group A,7.2 + 1.4 days; group B, 8 + 2.4days; p = 0.550), hemoptysis-free survival (group A, 1-year, 2-year, 3-year, 85.9%, 75.8%, 62.9%; group B, 1-year, 2-year, 3-year, 88.4%, 81.2%,59.4%;P = 0.060), and complications(group A,26.5%; group B, 38.6%; p = 0.175) between the two groups. No major complications were observed. The multivariate analysis results revealed that the presence of cystic bronchiectasis (OR 1.61, 95% CI 1.12-2.83; P = 0.001) and systemic arterial-pulmonary shunts (SPSs) (OR 1.52, 95% CI 1.10-2.72; P = 0.028) were independent risk factors for recurrent bleeding. CONCLUSIONS: For the treatment of BAE in patients with bronchiectasis-related hemoptysis, 500-750 µm diameter Embosphere microspheres have a similar efficacy and safety profile compared to 700-900 µm diameter Embosphere microspheres, especially for those without SPSs or cystic bronchiectasis. Furthermore, the utilization of large-sized (700-900 µm) Embosphere microspheres is associated with the reduced cost of an embolic agent.


Subject(s)
Acrylic Resins , Bronchial Arteries , Bronchiectasis , Embolization, Therapeutic , Hemoptysis , Microspheres , Humans , Hemoptysis/therapy , Hemoptysis/etiology , Retrospective Studies , Male , Female , Embolization, Therapeutic/methods , Middle Aged , Aged , Bronchiectasis/complications , Bronchiectasis/therapy , Gelatin/administration & dosage , Gelatin/therapeutic use , Treatment Outcome , Particle Size
8.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675536

ABSTRACT

Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.


Subject(s)
Constipation , Morus , Plant Leaves , Sesamum , Morus/chemistry , Constipation/drug therapy , Plant Leaves/chemistry , Sesamum/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Male , Gastrointestinal Motility/drug effects , Gastrointestinal Transit/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Gene Expression Profiling , Disease Models, Animal , Multiomics
9.
Front Immunol ; 15: 1344681, 2024.
Article in English | MEDLINE | ID: mdl-38469310

ABSTRACT

Exosomes are small extracellular vesicles (sEVs) secreted by cells. With advances in the study of sEVs, they have shown great potential in the diagnosis and treatment of disease. However, sEV therapy usually requires a certain dose and purity of sEVs to achieve the therapeutic effect, but the existing sEV purification technology exists in the form of low yield, low purity, time-consuming, complex operation and many other problems, which greatly limits the application of sEVs. Therefore, how to obtain high-purity and high-quality sEVs quickly and efficiently, and make them realize large-scale production is a major problem in current sEV research. This paper discusses how to improve the purity and yield of sEVs from the whole production process of sEVs, including the upstream cell line selection and cell culture process, to the downstream isolation and purification, quality testing and the final storage technology.


Subject(s)
Exosomes , Extracellular Vesicles , Biological Transport , Cell Culture Techniques , Cell Line
10.
Biomacromolecules ; 25(4): 2438-2448, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38502912

ABSTRACT

The treatment of infected wounds faces substantial challenges due to the high incidence and serious infection-related complications. Natural-based hydrogel dressings with favorable antibacterial properties and strong applicability are urgently needed. Herein, we developed a composite hydrogel by constructing multiple networks and loading ciprofloxacin for infected wound healing. The hydrogel was synthesized via a Schiff base reaction between carboxymethyl chitosan and oxidized sodium alginate, followed by the polymerization of the acrylamide monomer. The resultant hydrogel dressing possessed a good self-healing ability, considerable compression strength, and reliable compression fatigue resistance. In vitro assessment showed that the composite hydrogel effectively eliminated bacteria and exhibited an excellent biocompatibility. In a model of Staphylococcus aureus-infected full-thickness wounds, wound healing was significantly accelerated without scars through the composite hydrogel by reducing wound inflammation. Overall, this study opens up a new way for developing multifunctional hydrogel wound dressings to treat wound infections.


Subject(s)
Chitosan , Hydrogels , Hydrogels/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , Bandages
11.
Article in English | MEDLINE | ID: mdl-38508351

ABSTRACT

This study was intended to investigate whether Hericium erinaceus polysaccharides (HEP) prevent oxidative stress and apoptosis of intestinal porcine epithelial cells from jejunum (IPEC-J2 cells) induced by hydrogen peroxide (H2O2). Crude HEP were extracted and purified by chromatography. The ultraviolet and infrared spectra and monosaccharide composition of HEP were analyzed. Reactive oxygen species (ROS) generation was quantified by flow cytometry method, and lactate dehydrogenase (LDH) and malondialdehyde (MDA) production were determined by TBARS. Also, apoptosis was analyzed by flow cytometry method and the apoptosis-related regulatory molecules were determined by microplate or western blotting method. Our results showed that pretreatment of IPEC-J2 cells with HEP significantly scavenged ROS and reduced LDH and MDA production. HEP also reduced apoptosis and kept polarity of the mitochondrial membrane potential. Moreover, HEP increased the content of caspase-3 and PARP, and protein expression of Bcl-2, while inhibited Bax and Bad and reduced the content of caspase-9 and release of CytC. Meanwhile, HEP inhibited the protein expression of TNFR1, FAS, and FASL, and decreased the content of caspase-8. The results indicated that HEP had a protective effect against oxidative stress in IPEC-J2 cells and the underlying mechanism was reducing apoptosis via mitochondrial and death receptor pathways.


Subject(s)
Hericium , Hydrogen Peroxide , Oxidative Stress , Animals , Swine , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Cell Line , Epithelial Cells , Apoptosis
12.
Environ Int ; 186: 108594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527398

ABSTRACT

The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.


Subject(s)
Anti-Bacterial Agents , Copper , Gastrointestinal Microbiome , Tetracycline , Animals , Copper/toxicity , Tetracycline/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Feces/microbiology
13.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458517

ABSTRACT

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Airway Remodeling , Senescence-Associated Secretory Phenotype , Myocytes, Smooth Muscle , Asthma/metabolism , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/metabolism , Collagen Type I , Cell Proliferation , Particulate Matter/metabolism , Cells, Cultured
14.
Proc Natl Acad Sci U S A ; 121(6): e2316775121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300874

ABSTRACT

High pressure has triggered various novel states/properties in condensed matter, as the most representative and dramatic example being near-room-temperature superconductivity in highly pressured hydrides (~200 GPa). However, the mechanism of superconductivity is not confirmed, due to the lacking of effective approach to probe the electronic band structure under such high pressures. Here, we theoretically propose that the band structure and electron-phonon coupling (EPC) of high-pressure quantum states can be probed by solid-state high harmonic generation (sHHG). This strategy is investigated in high-pressure Im-3m H3S by the state-of-the-art first-principles time-dependent density-functional theory simulations, where the sHHG is revealed to be strongly dependent on the electronic structures and EPC. The dispersion of multiple bands near the Fermi level is effectively retrieved along different momentum directions. Our study provides unique insights into the potential all-optical route for band structure and EPC probing of high-pressure quantum states, which is expected to be helpful for the experimental exploration of high-pressure superconductivity in the future.

15.
J Drug Target ; 32(2): 213-222, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38164940

ABSTRACT

Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.


Subject(s)
Botulinum Toxins, Type A , Botulism , Clostridium botulinum , Humans , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/therapeutic use , Botulism/drug therapy , Botulism/prevention & control , Clostridium botulinum/metabolism , Antibodies, Monoclonal , Antiviral Agents/therapeutic use
16.
Asian J Psychiatr ; 93: 103913, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219553

ABSTRACT

Suicide attempts can cause serious physical harm or death. It would be crucial to gain a better understanding of the comparative efficacy of non-pharmacological interventions. We aimed to identify which non-pharmacological interventions are more effective in preventing suicide attempts. PubMed, Web of Science, and EMBASE databases were searched systematically from their inception until 3 April 2023. To be eligible for inclusion, randomized controlled trials (RCTs) had to meet the following criteria: Participants were individuals who had suicidal ideation or a history of severe self-harm or attempted suicide. A network meta-analysis was performed using a random effects model to estimate the treatment effect of various non-pharmacological interventions. (PROSPERO registration number: CRD42023411393). We obtained data from 54 studies involving 17,630 participants. Our primary analysis found that Cognitive therapy (CT) (OR=0.19, 95%CI =0.04-0.81), Dialectical Behavior Therapy (DBT) (OR=0.37, 95%CI =0.13-0.97), Cognitive-behavioral therapy (CBT) (OR=0.42, 95%CI =0.17-0.99), and Brief intervention and contact (BIC) (OR=0.65, 95%CI=0.44-0.94) were superior to TAU (within the longest available follow-up time) in preventing suicide attempts, while other intervention methods do not show significant advantages over TAU. Secondary analysis showed that the two intervention measures (CT and BIC) were effective when follow-up time did not exceed 6 months, but there was no effective intervention measure with longer follow-up times. CT, DBT, CBT, and BIC have a better effect in preventing suicide attempts than other non-pharmacological interventions. Additional research is necessary to validate which interventions, as well as which combinations of interventions, are the most effective.


Subject(s)
Cognitive Behavioral Therapy , Self-Injurious Behavior , Humans , Suicide, Attempted/psychology , Network Meta-Analysis , Cognitive Behavioral Therapy/methods , Suicidal Ideation , Self-Injurious Behavior/psychology , Randomized Controlled Trials as Topic
17.
Int J Biol Macromol ; 254(Pt 3): 127971, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944720

ABSTRACT

Developing efficient and safe antibacterial agents to inhibit pathogens including Physalospora piricola and Staphylococcus aureus is of great importance. Herein, a novel compound composed of Rosa roxburghii procyanidin, chitosan and selenium nanoparticle (RC-SeNP) was bio-synthesized, with the average diameter and zeta potential being 84.56 nm and -25.60 mV, respectively. The inhibition diameter of the RC-SeNP against P. piricola and S. aureus reached 18.67 mm and 13.13 mm, and the maximum scavenging activity against DPPH and ABTS reached 96.02% and 98.92%, respectively. Moreover, the RC-SeNP completely inhibited the propagation P. piricola and S. aureus on actual apples, suggesting excellent in vivo antimicrobial capacity. The transcriptome analysis and electron microscope observation indicated that the antibacterial activity would be attributed to adhering to and crack the cell walls as well as damage the cytomembrane and nucleus. Moreover, the RC-SeNP effectively maintained the vitamin C, total acid, and water contents of red bayberry, demonstrating potential application for fruit preservation. At last, the RC-SeNP showed no cell toxicity and trace selenium residual dose (0.03 mg/kg on apple, 0.12 mg/kg on red bayberry). This study would enlighten future development on novel nano-bioantibacterial agents for sustainable agriculture.


Subject(s)
Chitosan , Nanoparticles , Rosa , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Selenium/chemistry , Chitosan/chemistry , Staphylococcus aureus , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology
18.
Clin Genitourin Cancer ; 22(2): 84-91.e7, 2024 04.
Article in English | MEDLINE | ID: mdl-37758561

ABSTRACT

PURPOSE: To determine whether socioeconomic disparities have an impact on the likelihood of suicide among prostate cancer patients. METHODS: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database for patients diagnosed with malignant prostate cancer between 2005 and 2020. The socioeconomic disparities of the patients were evaluated by median household income (MHI) and ethnicity. Ethnicity included Spanish-Hispanic-Latino and non-Spanish-Hispanic-Latino. A Cox proportional risk model was utilized. Using the Kaplan-Meier approach, the cumulative incidence of suicide mortality was measured. RESULTS: A total of 857,418 US population with prostate cancer were included. In the multivariate analysis, individuals with MHI over $75,000 had a lower risk of suicide mortality than those with MHI between $54,999 and $74,999 in all patients (aHRs: 0.693, 95 CI%: 0.603-0.797). Spanish-Hispanic-Latino displayed lower overall suicide mortality in all patients (aHRs: 0.426, 95% CI: 0.323-0.561). In the subgroup analysis of different ages, individuals with MHI over $75,000 had a lower risk of suicide than those with MHI between $54,999 and $74,999 in patients 60 to 79 years (aHRs: 0.668, 95% CI: 0.562-0.794) and individuals with MHI below $54,999 had higher suicide risk than those with MHI between $54,999 and $74,999 in patients 80+ years (aHRs: 1.786, 95% CI: 1.100-2.902). Hispanic-Latino individuals had lower overall suicide mortality in 00 to 59 years (aHRs: 0.420, 95% CI: 0.240-0.734), 60 to 79 years (aHRs: 0.445, 95% CI: 0.319-0.621), 80+ years (aHRs: 0.363, 95% CI: 0.133-0.988). CONCLUSION: Socioeconomic disparities, including MHI and ethnicity, are important factors strongly related to suicide risk in prostate cancer patients. The lower MHI individuals and non-Spanish-Hispanic-Latino individuals were associated with higher suicide risk.


Subject(s)
Prostatic Neoplasms , Suicide , Humans , Male , Ethnicity , Hispanic or Latino , Prostatic Neoplasms/epidemiology , SEER Program , Socioeconomic Disparities in Health , Middle Aged , Aged , Aged, 80 and over
19.
Prostaglandins Other Lipid Mediat ; 170: 106803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040190

ABSTRACT

Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.


Subject(s)
Anti-Asthmatic Agents , Asthma , Lipoxins , Mice , Animals , Lipoxins/pharmacology , Asthma/chemically induced , Asthma/drug therapy , Asthma/metabolism , Anti-Asthmatic Agents/adverse effects , Lung/metabolism , Cytokines/metabolism , Plant Extracts/pharmacology , Mice, Inbred BALB C , Disease Models, Animal
20.
IEEE Trans Image Process ; 32: 6413-6425, 2023.
Article in English | MEDLINE | ID: mdl-37906473

ABSTRACT

Objects in aerial images show greater variations in scale and orientation than in other images, making them harder to detect using vanilla deep convolutional neural networks. Networks with sampling equivariance can adapt sampling from input feature maps to object transformation, allowing a convolutional kernel to extract effective object features under different transformations. However, methods such as deformable convolutional networks can only provide sampling equivariance under certain circumstances, as they sample by location. We propose sampling equivariant self-attention networks, which treat self-attention restricted to a local image patch as convolution sampling by masks instead of locations, and a transformation embedding module to improve the equivariant sampling further. We further propose a novel randomized normalization module to enhance network generalization and a quantitative evaluation metric to fairly evaluate the ability of sampling equivariance of different models. Experiments show that our model provides significantly better sampling equivariance than existing methods without additional supervision and can thus extract more effective image features. Our model achieves state-of-the-art results on the DOTA-v1.0, DOTA-v1.5, and HRSC2016 datasets without additional computations or parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...