Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36833751

ABSTRACT

"Land Use and Land Cover Change (LULCC)" is increasingly being affected by ecosystem services value. LULCC patterns have been subjected to significant changes over time, primarily due to an ever-increasing population. It is rare to attempt to analyze the influence of such changes on a large variety of ecosystem benefits in Madagascar island. The economic value of ecosystem services in Madagascar island is evaluated throughout the period from 2000 to 2019. The expansion of the human population affects the changing value of ecosystem services directly. The PROBA-V SR time series 300 m spatial resolution cover of land datasets from the "Climate Change Initiative of the European Space Agency (ESA)" were used to measure the values of ecosystem activities and the changes in those values caused by land use. A value transfer method was used to evaluate the value of ecosystem services to land use changes on Madagascar island. The findings show that from 2000 to 2019, at the annual rate of 2.17 percent, Madagascar island's ecosystem service value (ESV) grew to 6.99 billion US dollars. The components that greatly contributed to the total change of ESV were waste treatment, genetic resources, food production, and habitat/refugia. These components in 2000 contributed 21.27%, 20.20%, 17.38%, and 13.80% of the total ESV, and 22.55%, 19.76%, 17.29%, and 13.78% of the total ESV in 2019, respectively. Furthermore, it was found that there was a great change in LULCC. From 2000 to 2019, bare land, built-up land, cultivated land, savannah, and wetland increased while other LULCC types decreased. The sensitivity coefficient ranged from 0.649 to 1.000, <1, with forestland registering the highest values. Wetland is in the second position for the most important land cover category in Madagascar, considering the total value of the ecosystem. The value of ecosystem benefits per unit of the land area was higher on cultivated land, despite the relatively low fraction of cultivated land area across these eras. The sensitivity indices of seven land types from 2000 to 2019 were mapped to understand better the geographical distribution patterns of ESV's "equivalent value coefficient" (VC) across various land uses. It is suggested that the ESV should be included in Madagascar's government land-use plan to manage it effectively and efficiently with fewer negative effects on the ecosystem.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Madagascar , Forests , Africa
2.
J Environ Manage ; 330: 117190, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36603263

ABSTRACT

An ambitious new Post-2020 Global Biodiversity Framework "Kunming-Montreal Global Biodiversity Framework" has been developed. However, the combined effects of climate change and human modification can undermine the potential benefits of the global post-2020 conservation efforts. The co-benefits of stabilizing the climate, conserving biodiversity, and maintaining intact wilderness areas may help to persuade the general public of the need to quickly expand existing protected areas (PAs). To maximize the co-benefits after 2020, the careful optimization of existing (PAs) network and scientific identification of conservation targets are both essential. Here, we mapped hotspots of biodiversity, climate vulnerability, and wilderness in Southwest China (SWC). By analyzing the representativeness and gaps of the existing PAs network in SWC, we devised post-2020 conservation targets and highlighted their implications for decision-makers. Our results showed that the incongruence between hotspots of different species exists, indicating that habitats suitable for one taxon may not fully harbor other taxa. According to our assessment, the five jurisdictions of SWC have warmed on average by 0.4°C-1.1 °C over the past 60 years alone. In particular, biodiversity hotspots in SWC are undergoing stark climatic changes. We uncovered prominent conservation gaps in SWC's network of PAs, especially in terms of climate vulnerability and biodiversity. Due to their insufficient number and unreasonable spatial distribution, the PAs network in SWC may be not capable of meeting its biodiversity, climate vulnerability, and wilderness conservation objectives. To rectify this, we proposed a 3-step mission: milestone 2025, milestone 2030, and goal 2050, which aims to protect 23%, 28%, and 60% of the terrestrial area in SWC, respectively. Taken together, our study derived conservation priority areas with relatively clear spatial boundaries and importance levels, thus providing detailed, timely information for decision-makers to expand the PAs network and implement conservation measures varying in strictness in post-2020 conservation practice.


Subject(s)
Climate Change , Conservation of Natural Resources , Biodiversity , China , Conservation of Natural Resources/methods , Ecosystem
3.
J Environ Manage ; 325(Pt B): 116575, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308968

ABSTRACT

Environmental managers have been striving to optimize landscape structure to achieve a sustained supply of ecosystem services (ESs). However, we still lack a full understanding of the relationships between landscape structure and ESs due to the absence of thorough investigations on the variability of these relationships in space and time. To fill this critical gap, we assessed landscape structure alongside four important ESs (agricultural production (AP), carbon sequestration (CS), soil conservation (SC), and water retention (WR)) in the Wuhan metropolitan area (WMA), and then analyzed the spatiotemporal impacts of landscape structure on ESs from 2000 to 2020 using Geographically and Temporally Weighted Regression. The results show only AP maintained a stable growth trend over the past two decades, while the other ESs fluctuated considerably with a noticeable decline in SC and WR. The importance of landscape structure in influencing ESs varies by time and place, depending on the local landscape composition and configuration. In general, landscape composition has a stronger and less temporally stable impact on ESs compared to configuration. Furthermore, increases in landscape diversity, as measured through Shannon's diversity index, and the percentage of woodlands were found to contribute to the simultaneous benefits of multiple ESs, but in most cases the effects of landscape structure on different ESs were different or even opposite, suggesting that trade-offs are critical in landscape management. The findings highlight the complex response of ESs to dramatically changing landscapes in the WMA and can guide decision-makers in precise spatial arrangement and temporal adjustments to improve current landscape management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Agriculture/methods , Cities , Carbon Sequestration , Soil , China
4.
Article in English | MEDLINE | ID: mdl-36361410

ABSTRACT

To clarify the evolution of "production-living-ecological" function coupling in the Yellow River Basin, coordinating the spatial allocation of resources, development management and layout optimization, is an important means for achieving ecological protection and high-quality development in the region. In this paper, we conducted an empirical analysis and ARIMA prediction of the coupled production-living-ecological function coordination level in the Yellow River Basin of China from 2008 to 2018, and found that: (1) In terms of temporal evolution, the production-living-ecological function and coupling coordination level of each province and region in the Yellow River Basin generally shows a sharp and then slow upward trend, with the living functions changing more than the production and ecological functions; (2) in terms of spatial pattern, the production and living functions of each province and region show the trend of functional level increasing from east to west over time; the ecological functions, contrary to production and living functions, show a "high-low" aggregation, midstream shows "low-low" aggregation, and downstream shows "low-high" aggregation; (3) According to the regression results of the spatial Dubin model, the environmental governance level, technological research and development level, and social security level and resource dependence degree have positive promoting and spillover effects on the coupling coordination level of the "production-living-ecological" function in the region. However, population density and carbon emission intensity will hinder the development of regional coupling coordination level; (4) from the ARIMA prediction, the coupling coordination level of "production-living-ecological" in the Yellow River Basin continues the development trend of 2008-2018 in the short term, the overall coordination level is at a high level, and the variability of coupling coordination level among provinces and regions is further reduced. Finally, corresponding development countermeasures and suggestions are given to different provinces and regions based on the spatial and temporal evolution characteristics, influencing factors and development trend of the "production-living-ecological" function in the Yellow River basin.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Conservation of Natural Resources/methods , Rivers , China , Economic Development
5.
Foods ; 11(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454709

ABSTRACT

Understanding the dynamics of the grain yield gap (YGAP) and its causative factors is essential for optimizing the layout of grain production and addressing the food crisis, especially in countries with a huge population and less cultivated land, such as China. In the study, a spatial analysis- and machine learning-based framework for YGAP analysis was developed, taking Hunan Province, China, as an application. The results showed that the average YGAP in Hunan Province gradually narrowed from 1990 to 2018, and the YGAPs narrowed in 116 counties. Of which, 26 counties narrowed by more than 4 t ha-1, 58 counties narrowed from 2-4 t ha-1, and 32 counties narrowed within 2 t ha-1. Additionally, we found that the GDP per capita (GDPPC), sunshine hours (SH), per capita annual net income of farmers (PCAI), and rural electricity consumption (REC) play a key role in YGAP change, and the importance of human investment to the YGAP decreased, while socioeconomic environment became the dominant factor that influenced grain production. Comprehensively, the relatively great potential for grain yield growth was generated in sixty-four counties, which are mainly located in the northern, central, and southern Hunan. The findings suggest that it is necessary to consider the trends of economic development in rural areas and population migration in agricultural management. This work provides insights into yield gap dynamics and may contribute to sustainable agricultural management in Hunan Province, China, and other similar regions.

6.
Article in English | MEDLINE | ID: mdl-34299867

ABSTRACT

West African coastal areas including the Beninese coastal zones have undergone an intensification of socio-economic activity in the last few decades that has been strongly driven by the effects of rapid urbanization. This has led to land-use and land cover changes that represent threats to the sustainability of various ecosystem functions. Such dynamics of land use and land cover changes pose challenges to coastal zone management. Correct assessment is vital for policymakers and planners to ensure efficient and sustainable use of the coastal ecosystem services, and it remains crucial to achieving sustainable coastal zone management. This study examines changes in land-use and land cover (LULC) and their impacts on ecosystem services value (ESV) fluctuations in the tropical coastal region of Benin, West Africa. We employed Globe Land 30 image data for the years 2010 and 2020, and the ESV fluctuations during the study period were evaluated using the benefit transfer approach (BTA) with corresponding local coefficients values and the GIS techniques. The results reveal that (1) in the current urbanizing coastal area, the LULC types have changed significantly, with obvious reductions in forest land and waterbodies and a considerable increase in artificial surfaces; (2) the total ESV decreased by 8.51% from USD 7.1557 million in 2010 to USD 6.5941 million in 2020; (3) the intensity of LULC in the coastal region has increased over the last 10 years; (4) regions with high land-use intensity have a high rate of ESV change; and (5) provisioning services are the greatest contributors of ESV (51% in 2010; 41% in 2020), followed by supporting services (37% in 2010; 35% in 2020) and regulating services (25% in 2010; 30% in 2020). Uncontrolled changes in LULC from forest land and waterbodies are the main causes of the loss in total ESV, necessitating urgent measures to improve the coastal ecosystem sustainability through effective planning and policies.


Subject(s)
Ecosystem , Urbanization , Benin , China , Conservation of Natural Resources , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...