Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38713350

ABSTRACT

Rapid passivation and aggregation of nanoscale zero-valent iron (nZVI) seriously limit its performance in the remediation of different contaminants from wastewater. To overcome such issues, in the present study, nano-palladium/iron (nPd/Fe) was simultaneously improved by biochar (BC) prepared from discarded peanut shells and green complexing agent sodium citrate (SC). For this purpose, a composite (SC-nPd/Fe@BC) was successfully synthesized to remove 2,4-dichlorophenol (2,4-DCP) from wastewater. In the SC-nPd/Fe@BC, BC acts as a carrier with dispersed nPd/Fe particles to effectively prevent its agglomeration, and increased the specific surface area of the composite, thereby improving the reactivity and stability of nPd/Fe. Characterization results demonstrated that the SC-nPd/Fe@BC composites were well dispersed, and the agglomeration was weakened. The formation of the passivation layer on the surface of the particles was inhibited, and the mechanism of SC and BC improving the reactivity of nPd/Fe was clarified. Different factors were found to influence the reductive dichlorination of 2,4-DCP, including Pd loading, Fe:C, SC addition, temperature, initial pH, and initial pollutant concentration. The dechlorination results revealed that the synergistic effect of the BC and SC made the removal efficiency and dechlorination rate of 2,4-DCP by SC-nPd/Fe@BC reached to 96.0 and 95.6%, respectively, which was better than that of nPd/Fe (removal: 46.2%, dechlorination: 45.3%). Kinetic studies explained that the dechlorination reaction of 2,4-DCP and the data were better represented by the pseudo-first-order kinetic model. The reaction rate constants followed the order of SC-nPd/Fe@BC (0.0264 min-1) > nPd/Fe@BC (0.0089 min-1) > SC-nPd/Fe (0.0081 min-1) > nPd/Fe (0.0043 min-1). Thus, SC-nPd/Fe@BC was capable of efficiently reducing 2,4-DCP and the dechlorination efficiency of BC and SC synergistically assisted composite on 2,4-DCP was much better than that of SC-nPd/Fe, nPd/Fe@BC and nPd/Fe. Findings suggested that SC-nPd/Fe@BC can be promising for efficient treatment of chlorinated pollutants.

2.
Curr Issues Mol Biol ; 46(3): 1851-1864, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38534737

ABSTRACT

Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.

3.
CNS Neurosci Ther ; 30(2): e14573, 2024 02.
Article in English | MEDLINE | ID: mdl-38421101

ABSTRACT

AIMS: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. AD pathology involves protein acetylation. Previous studies have mainly focused on histone acetylation in AD, however, the roles of nonhistone acetylation in AD are less explored. METHODS: The protein acetylation and expression levels were detected by western blotting and co-immunoprecipitation. The stoichiometry of acetylation was measured by home-made and site-specific antibodies against acetylated-CaM (Ac-CaM) at K22, K95, and K116. Hippocampus-dependent learning and memory were evaluated by using the Morris water maze, novel object recognition, and contextual fear conditioning tests. RESULTS: We showed that calmodulin (CaM) acetylation is reduced in plasma of AD patients and mice. CaM acetylation and its target Ca2+ /CaM-dependent kinase II α (CaMKIIα) activity were severely impaired in AD mouse brain. The stoichiometry showed that Ac-K22, K95-CaM acetylation were decreased in AD patients and mice. Moreover, we screened and identified that lysine deacetylase 9 (HDAC9) was the main deacetylase for CaM. In addition, HDAC9 inhibition increased CaM acetylation and CaMKIIα activity, and hippocampus-dependent memory in AD mice. CONCLUSIONS: HDAC9-mediated CaM deacetylation induces memory impairment in AD, HDAC9, or CaM acetylation may become potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Humans , Animals , Alzheimer Disease/metabolism , Calmodulin , Mice, Transgenic , Memory Disorders/etiology , Hippocampus/metabolism , Disease Models, Animal , Histone Deacetylases/metabolism , Repressor Proteins/metabolism
4.
CNS Neurosci Ther ; 30(2): e14587, 2024 02.
Article in English | MEDLINE | ID: mdl-38421142

ABSTRACT

INTRODUCTION: Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS: Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS: Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION: The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.


Subject(s)
Glymphatic System , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Glymphatic System/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Substantia Nigra , Disease Models, Animal
5.
ACS Appl Mater Interfaces ; 16(7): 8783-8790, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335216

ABSTRACT

In recent years, lithium oxygen batteries (Li-O2) have received considerable research attention due to their extremely high energy density. However, the poor conductivity and ion conductivity of the discharge product lithium peroxide (Li2O2) result in a high charging overpotential, poor cycling stability, and low charging rate. Therefore, studying and improving catalysts is a top priority. This study focuses on the commonly used heterogeneous catalyst ruthenium (Ru). The local distribution of this catalyst is controlled by using sputtering technology. Moreover, X-ray nanodiffraction is applied to observe the relationship between the decomposition of Li2O2 and the local distribution of Ru. Results show that Li2O2 decomposes homogeneously in liquid systems and heterogeneously in solid-state systems. This study finds that the catalytic effect of Ru is related to electrolyte decomposition and that its soluble byproducts act as electron acceptors or redox mediators, effectively reducing charging overpotential but also shortening the cycle life.

6.
Article in English | MEDLINE | ID: mdl-38016108

ABSTRACT

In recent years, the development of electric vehicles and environmental concerns have made necessary improvements in the energy density and safety of lithium-ion batteries. Therefore, the development of all-solid-state lithium-ion batteries (ASSLIBs) has become imperative. One advantage of ASSLIBs is their potential for downsizing with the use of lithium metal as the anode. However, in this study, a garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12) was used, which has low reactivity with lithium metal. Thus, interface modification using CaCl2 was employed to form a Li-Ca-Cl composite anode. The interfacial resistance was remarkably reduced to 7 Ω cm2, and the symmetric cell exhibited stable cycling for 1200 h at room temperature and a current density of 0.1 mA cm-2. The voltage ranged from ±15 to ±16 mV. The full cell demonstrated a high initial discharge capacity of 149.2 mA h g-1 and a Coulombic efficiency of 98.0% while maintaining a discharge capacity retention of 91.3% after 100 cycles. These findings lay a solid foundation for future commercial applications as interface modification was achieved through a simple spin-coating process using low-cost CaCl2 (0.7 USD g-1).

7.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Article in English | MEDLINE | ID: mdl-37857164

ABSTRACT

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Subject(s)
Bone Neoplasms , Cancer Pain , Neoplasms , RNA, Long Noncoding , Rats , Female , Animals , RNA, Long Noncoding/genetics , Down-Regulation , Rats, Sprague-Dawley , Pain/genetics , Pain/metabolism , Cancer Pain/genetics , Cancer Pain/pathology , Hyperalgesia/genetics , RNA, Messenger/metabolism , Natriuretic Peptides/metabolism , Bone Neoplasms/complications , Bone Neoplasms/genetics , Bone Neoplasms/metabolism
8.
ACS Appl Mater Interfaces ; 15(37): 44413-44421, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37683282

ABSTRACT

Next-generation lithium-ion batteries must have high energy density and safety, making the development of all-solid-state batteries imperative. One of the biggest advantages of an all-solid-state lithium-ion battery (ASSLIB) is that its alloy uses lithium metal as an anode while ignoring its flammability and other dangers. Herein, high-conductivity garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) was chosen as the solid electrolyte part of an all-solid-state battery. A composite anode was formed by melting Li and MXene-MAX together, reducing the interface impedance from 566 to 55 Ω cm2. The Li-MXene|LLZTO|LFP full battery displayed a high initial discharge capacity of 163.0 mAh g-1 and a Coulombic efficiency of 97.0% and maintained 90.2% of its discharge capacity over 100 cycles, but it did not maintain a good overpotential. Therefore, the synergistic effect of Li-MXene-Pt will highly improve the performance of the full battery because of its high initial discharge capacity of 150.0 mAh g-1 and Coulombic efficiency of 95.5%, discharge capacity maintained at 93.3% over 100 cycles, and low overpotential of 0.04 V.

9.
ChemSusChem ; 16(19): e202300504, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37505227

ABSTRACT

Garnet-type solid-state electrolytes are among the most reassuring candidates for the development of solid-state lithium metal batteries (SSLMB) because of their wide electrochemical stability window and chemical feasibility with lithium. However, issues such as poor physical contact with Li metal tend to limit their practical applications. These problems were addressed using ß-SiC as an additive to the Li anode, resulting in improved wettability over Li6.75 La3 Zr1.75 Ta0.25 O12 (LLZTO) and establishing an improved interfacial contact. At the Li-SiC|LLZTO interface, intimacy was induced by a lithiophilic Li4 SiO4 phase, whereas robustness was attained through the hard SiC phase. The optimized Li-SiC|LLZTO|Li-SiC symmetric cell displayed a low interfacial impedance of 10â€…Ω cm2 and superior cycling stability at varying current densities up to 5800 h. Moreover, the modified interface could achieve a high critical current density of 4.6 mA cm-2 at room temperature and cycling stability of 1000 h at 3.5 mA cm-2 . The use of mechanically superior materials such as SiC as additives for the preparation of a composite anode may serve as a new strategy for robust garnet-based SSLMB.

10.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37436918

ABSTRACT

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

11.
ACS Appl Mater Interfaces ; 15(27): 32589-32596, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37364173

ABSTRACT

The rapid change in population, environment, and climate is accompanied by the food crisis. As a new type of farming, indoor agriculture opens the possibility of addressing this crisis in the future. In this study, a phosphor-converted light-emitting diode (pc-LED), as energy-saving lighting for indoor agriculture, was used to evaluate the response and effect on the growth of Lactuca sativa. Red phosphors, SrLiAl3N4:Eu2+ (SLA) and CaAlSiN3:Eu2+ (CASN), were characterized and analyzed with crystal structure, morphology, and optical properties. Eu2+-doped phosphors provided the red emission of around 650 nm which is highly matched with the absorption of chlorophyll. Under the same luminescence intensity, broader emission of CASN pc-LED demonstrated a 100% increase of photosynthetically active photon flux density and 130% promotion of plant weight than the SLA pc-LED, which reflected the positive result of the carbon fixation. The chlorophyll and nitrate responses have also revealed the effect of broader red light on indoor agriculture.

12.
Mol Pain ; 19: 17448069231170072, 2023.
Article in English | MEDLINE | ID: mdl-37002193

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Subject(s)
Irritable Bowel Syndrome , Melatonin , Visceral Pain , Rats , Animals , Male , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/metabolism , Rats, Sprague-Dawley , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Visceral Pain/metabolism , Nociception , Receptor, Melatonin, MT2/metabolism , Ganglia, Spinal/metabolism , Tetrodotoxin , NAV1.8 Voltage-Gated Sodium Channel/metabolism
13.
Article in English | MEDLINE | ID: mdl-36780369

ABSTRACT

With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O2 batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O2 batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO3)2:1 M Mg(TFSI)2/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O2 batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25 793 mAh g-1 with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)2/diglyme). This CME-based Ru/CNT Mg-O2 battery design could have a significant outcome as a future battery technology.

14.
CNS Neurosci Ther ; 29(6): 1678-1689, 2023 06.
Article in English | MEDLINE | ID: mdl-36852448

ABSTRACT

AIMS: Gastric hypersensitivity (GHS) is a characteristic pathogenesis of functional dyspepsia (FD). DNA methyltransferase 1 (DNMT1) and acid-sensing ion channel 1 (ASIC1) are associated with GHS induced by prenatal maternal stress (PMS). The aim of this study was to investigate the mechanism of DNMT1 mediating the analgesic effect of folic acid (FA) on PMS-induced GHS. METHODS: GHS was quantified by electromyogram recordings. The expression of DNMT1, DNMT3a, DNMT3b, and ASIC1 were detected by western blot, RT-PCR, and double-immunofluorescence. Neuronal excitability and proton-elicited currents of dorsal root ganglion (DRG) neurons were determined by whole-cell patch clamp recordings. RESULTS: The expression of DNMT1, but not DNMT3a or DNMT3b, was decreased in DRGs of PMS rats. FA alleviated PMS-induced GHS and hyperexcitability of DRG neurons. FA also increased DNMT1 and decreased ASIC1 expression and sensitivity. Intrathecal injection of DNMT1 inhibitor DC-517 attenuated the effect of FA on GHS alleviation and ASIC1 downregulation. Overexpression of DNMT1 with lentivirus not only rescued ASIC1 upregulation and hypersensitivity, but also alleviated GHS and hyperexcitability of DRG neurons induced by PMS. CONCLUSIONS: These results indicate that increased DNMT1 contributes to the analgesic effect of FA on PMS-induced GHS by reducing ASIC1 expression and sensitivity.


Subject(s)
Acid Sensing Ion Channels , Folic Acid , Female , Pregnancy , Rats , Animals , Acid Sensing Ion Channels/metabolism , Folic Acid/pharmacology , Folic Acid/therapeutic use , Folic Acid/metabolism , Neurons/metabolism , Up-Regulation , Analgesics/pharmacology , Ganglia, Spinal
15.
Article in English | MEDLINE | ID: mdl-36757360

ABSTRACT

All-solid-state lithium-ion batteries (ASSLIBs) have attracted much attention owing to their high energy density and safety and are known as the most promising next-generation LIBs. The biggest advantage of ASSLIBs is that it can use lithium metal as the anode without any safety concerns. This study used a high-conductivity garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) and Li-Ga-N composite anode synthesized by mixing melted Li with GaN. The interfacial resistance was reduced from 589 to 21 Ω cm2, the symmetry cell was stably cycled for 1000 h at a current density of 0.1 mA cm-2 at room temperature, and the voltage range only changed from ±30 to ±40 mV. The full cell of Li-Ga-N|LLZTO|LFP exhibited a high first-cycle discharge capacity of 152.2 mAh g-1 and Coulombic efficiency of 96.5% and still maintained a discharge capacity retention of 91.2% after 100 cycles. This study also demonstrated that Li-Ga-N had been shown as two layers. Li3N shows more inclined to be closer to the LLZTO side. This method can help researchers understand what interface improvements can occur to enhance the performance of all-solid-state batteries in the future.

16.
ChemSusChem ; 16(7): e202202151, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36634026

ABSTRACT

All-solid-state batteries with solid ionic conductors packed between solid electrode films can release the dead space between them, enabling a greater number of cells to stack, generating higher voltage to the pack. This Review is focused on using high-voltage cathode materials, in which the redox peak of the components is extended beyond 4.7 V. Li-Ni-Mn-O systems are currently under investigation for use as the cathode in high-voltage cells. Solid electrolytes compatible with the cathode, including halide- and sulfide-based electrolytes, are also reviewed. Discussion extends to the compatibility between electrodes and electrolytes at such extended potentials. Moreover, control over the thickness of the anode is essential to reduce solid-electrolyte interphase formation and growth of dendrites. The Review discusses routes toward optimization of the cell components to minimize electrode-electrolyte impedance and facilitate ion transportation during the battery cycle.

17.
Environ Pollut ; 317: 120731, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427819

ABSTRACT

Desilicification and allitization is important characteristic of acidic soil. While decrease in soil silicon (Si) may generate Si limitation, the increase of aluminum (Al) will aggravate soil acidification. Biochar has been used in acid soil improvement, which could mitigate nitrous oxide (N2O) emissions and alter soil Si and Al concentration. However, the effect of biochar with different Si and Al concentration on greenhouse gas emissions remains unclear. We evaluated the effects of biochar derived from feedstock with different Si (moso bamboo leaves, BL; rice straw, RS) and Al (Camellia oleifera fruit shell, CFS; C. oleifera leaves, CL) concentration on greenhouse gas emissions and soil acidification. Microbial functional gene abundance associated with N2O emissions were measured to further explore the response of microbiological community. The results showed that BL, RS, CFS and CL significantly increased soil pH (by 19.2%, 16.7%, 18.7% and 24.9%, respectively), decreased soil exchangeable acid and exchangeable Al content, and reduced N2O emission rate of soil with nitrogen (N) (by 14.2%, 27.3%, 25.6% and 38.7%, respectively), which correlated with increase in soil nosZ abundance. BL, RS, CFS and CL increased soil nirK (by 325.6%, 66.7%, 155.8%, and 253.2%, respectively) and nosZ (by 198.6%, 174.1%, 72.2%, and 152.0%, respectively) abundance with N. Structural equation model showed that Si input via biochar application directly reduced N2O emissions, and soil acid-extractable Si is inversely proportional to N2O emission rate. In addition, Si input reduced carbon dioxide (CO2) emissions via indirect effects. Al input via biochar addition indirectly affected N2O and CO2 emissions through mainly indirect effects on other soil factors. In intensive management and production activities, Si-rich biochar can be considered instead of sole addition as fertilizer, which will be beneficial to the sustainable development of agricultural and forestry production in acid soil areas, and mitigation of global change.


Subject(s)
Greenhouse Gases , Humans , Soil/chemistry , Carbon Dioxide/analysis , Aluminum , Silicon , Greenhouse Gases/analysis , Charcoal/chemistry , Nitrous Oxide/analysis
18.
Pain ; 164(3): 625-637, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35994589

ABSTRACT

ABSTRACT: Irritable bowel syndrome is a functional gastrointestinal disorder characterized by chronic visceral pain with complex etiology and difficult treatment. Accumulated evidence has confirmed that the sensitization of the central nervous system plays an important role in the development of visceral pain, whereas the exact mechanisms of action of the neural pathways remain largely unknown. In this study, a distinct neural circuit was identified from the paraventricular hypothalamic (PVH) to the ventral of lateral septal (LSV) region. This circuit was responsible for regulating visceral pain. In particular, the data indicated that the PVH CaMKIIα-positive neurons inputs to the LSV CaMKIIα-positive neurons were only activated by colorectal distention rather than somatic stimulations. The PVH-LSV CaMKIIα + projection pathway was further confirmed by experiments containing a viral tracer. Optogenetic inhibition of PVH CaMKIIα + inputs to LSV CaMKIIα-positive neurons suppressed visceral pain, whereas selective activation of the PVH-LSV CaMKIIα + projection evoked visceral pain. These findings suggest the critical role of the PVH-LSV CaMKIIα + circuit in regulating visceral pain.


Subject(s)
Septal Nuclei , Visceral Pain , Humans , Paraventricular Hypothalamic Nucleus/physiology , Neural Pathways/physiology , Neurons/physiology
19.
Cancers (Basel) ; 14(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36551690

ABSTRACT

Locked nucleic acid quantitative Real-Time PCR (LNA-qPCR) for IDH1/2 mutations in AML measurable residual disease (MRD) detection is rarely reported. LNA-qPCR was applied to quantify IDH1/2 mutants MRD kinetics in bone marrow from 88 IDH1/2-mutated AML patients, and correlated with NPM1-MRD, clinical characteristics, and outcomes. The median normalized copy number (NCN) of IDH1/2 mutants decreased significantly from 53,228 (range 87−980,686)/ALB × 106 at diagnosis to 773 (range 1.5−103,600)/ALB × 106 at first complete remission (CR). IDH1/2 LNA-qPCR MRD was concordant with remission status or NPM1-MRD in 79.5% (70/88) of patients. Younger patients and patients with FLT3 mutations had higher concordance. The Spearman correlation coefficient (rs) and concordance rate between the log reduction of IDH1/2 LNA-qPCR and NPM1-MRD were 0.68 and 81% (K = 0.63, 95% CI 0.50−0.74), respectively. IDH1/2-MRD > 2 log reduction at first CR predicted significantly better relapse-free survival (3-year RFS rates 52.9% vs. 31.9%, p = 0.007) and cumulative incidence of relapse (3-year CIR rates 44.5% vs. 64.5%, p = 0.012) compared to IDH1/2-MRD ≤ 2 log reduction. IDH1/2-MRD > 2 log reduction during consolidation is also associated with a significantly lower CIR rate than IDH1/2-MRD ≤ 2 log reduction (3-year CIR rates 42.3% vs. 68.8%, p = 0.019). LNA-qPCR for IDH1/2 mutation is a potential MRD technique to predict relapse in IDH1/2-mutated AML patients, especially for those with IDH1/2 MRD > 2 log reduction at first CR or a concurrent FLT3 mutation.

20.
ACS Appl Mater Interfaces ; 14(35): 39896-39906, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36018035

ABSTRACT

Solar-driven water electrolysis to produce hydrogen is one of the clean energy options for the current energy-related challenges. Si as a photocathode exhibits a large overpotential due to the slow hydrogen evolution reaction (HER) kinetics and hence needs to be modified with a cocatalyst layer. MoS2 is a poor HER cocatalyst due to its inert basal plane. Activation of the MoS2 basal plane will facilitate HER kinetics. In this study, we have incorporated SnS2 into MoS2 ultrathin sheets to induce defect formation and phase transformation. MoS2/SnS2 composite ultrathin sheets with a Sn2+ state create a large number of S vacancies on the basal sites. The optimized defect-rich MoS2/SnS2 ultrathin sheets decorated on surface-modified Si micro pyramids as photocathodes show a current density of -23.8 mA/cm2 at 0 V with an onset potential of 0.23 V under acidic conditions, which is higher than that of the pristine MoS2. The incorporation of SnS2 into 2H-MoS2 ultrathin sheets not only induces a phase but also can alter the local atomic arrangement, which in turn is verified by their magnetic response. The diamagnetic SnS2 phase causes a decrease in symmetry and an increase in magnetic anisotropy of the Mo3+ ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...