Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Ecotoxicol Environ Saf ; 254: 114723, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36871354

ABSTRACT

Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Humans , Acetylcholinesterase/metabolism , Oxidative Stress , Embryonic Development , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism , Transcription Factors/metabolism , Homeodomain Proteins/metabolism
2.
Analyst ; 147(19): 4187-4196, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36018676

ABSTRACT

The urgent threat of new psychoactive substances worldwide promotes rapid detection and identification demand for public security. Ambient ionization mass spectrometry (AIMS) has become mainstream among various detection techniques. Still, scant successful applications have been fulfilled toward dried blood spot (DBS) or plasma spot (DPS) as an easy-to-implement sampling format in AIMS. This work bridged the gap between dielectric barrier discharge ionization mass spectrometry (DBDI-MS) and DPS/DBS samples by thermal desorption (TD) assistance. It made the impossible mission of direct DBDI-MS measurement on DPS/DBS samples containing fentanyl analogs (FTNs) possible. Guided by finite element simulations and a customized three-dimensional printing interface, we constructed a semi-covered flat-TD surface for sufficient desorption and ionization of FTNs from DPS/DBS samples without any sample pretreatment or sample separation. We successfully quantified eight FTNs in DPS samples using deuterated fentanyl as internal standard by triple quadrupole tandem mass spectrometry (MS/MS) and proved its practical applicability in the fentanyl-exposed rat plasma samples. This DBDI-TD-MS method also fits well with DBS samples, and it only took 20 s to analyze each sample. Further, based on summarized fragmentation characteristics of twenty FTNs, we established a backbone alerting ion-guided screening rule for suspect screening of FTNs in DPS samples via quadrupole time-of-flight MS/MS and built a chemometric approach for convenient mutual verification of screening "unknown" artificial samples. We hope this ideal DBDI-TD-MS method finds its valuable role in national security, doping control, and public health for routine large-scale analysis or on-site detection.


Subject(s)
Dried Blood Spot Testing , Tandem Mass Spectrometry , Animals , Cyanates , Dried Blood Spot Testing/methods , Fentanyl , Plasma , Rats , Tandem Mass Spectrometry/methods
3.
Se Pu ; 40(7): 677-683, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35791607

ABSTRACT

According to the Report of Drug Situation in China (2020), the growth rate of the number of drug abusers in China has decreased, but the number of drug abusers is still large. An efficient screening method is necessary for controlling drug abuse. As an important type of biological sample, urine is widely used for the rapid screening of drug addicts. However, because of the complex composition, low content, and strong interference from the body's metabolism, the detection of drugs in urine remains a challenge. Traditional rapid screening techniques such as immunocolloidal gold analysis have a high false positive rate and insufficient quantitative capability. In addition, laboratory mass spectrometry methods require complicated time-consuming sample pre-processing and strict environmental conditions, and hence, are unsuitable for on-site rapid analysis. In recent years, various direct ionization mass spectrometry techniques such as direct analysis in real time (DART), desorption electrospray ionization (DESI), and dielectric barrier discharge ionization (DBDI) have advanced rapidly. These techniques have been applied to public safety, food safety, environmental detection, etc. In contrast to traditional ionization mass spectrometry methods, these direct ionization techniques allow for the in situ analysis of samples with simple or no pretreatment; moreover, they have the advantages of high analytical efficiency and sensitivity. In particular, pulsed electrospray ionization has the characteristics of less sample demand, compact, lightweight equipment, and no carrier gas. This paper presents a rapid method based on pulsed electrospray ionization mass spectrometry for the detection of urine samples. A rapid detection platform comprising a probe electrospray ionization source, a portable linear ion trap mass spectrometer (MS), and their coupling interface is adopted. The probe electrospray ion source includes a conducting metal wire, plastic handle, and silica glass capillary, whose tip has an inner diameter of 50 µm. The guide rail at the coupling interface is used to align the probe with the sample inlet of the portable mass spectrometer and maintain a distance of 10 mm between the probe tip and the sample inlet of the MS. The spray voltage of the probe electrospray ion source and the temperature of the MS inlet capillary are optimized at 1.8 kV and 205 ℃, respectively. In addition, rapid and efficient pretreatment techniques for urine samples have been developed. Buffer salts used for pH regulation and liquid-liquid extraction based on ethyl acetate were adopted for the pretreatment process. The linearity of the detection ability and the linear ranges of various drug-spiked solutions were also investigated. The results showed that the correlation coefficients for the quantitative detection of methamphetamine, ketamine, methylenedioxymethamphetamine (MDMA), and cocaine were greater than 0.99 at concentrations ranging from 1 to 100 ng/mL. Moreover, the limits of detection (LODs) for the five conventional drug-spiked urine were 0.5-30 ng/mL. The spiked recoveries ranged from 56.1% to 103.7%, with relative standard deviations (RSDs) of 9.0%-27.8%, implying that the combination of the instruments and the pretreatment method can lead to good accuracy. To validate the performance of the rapid detection method, 40 positive and 110 negative urine samples were tested and analyzed. The overall accuracy was over 99%, and the five conventional drugs in urine samples could be detected within 20 s. The research findings of this work could promote the development of rapid detection technology, accelerate the popularization and application of ambient direct ionization mass spectrometry, and improve the services of on-site law enforcement.


Subject(s)
Methamphetamine , Spectrometry, Mass, Electrospray Ionization , China , Limit of Detection , Spectrometry, Mass, Electrospray Ionization/methods
4.
IEEE Trans Biomed Eng ; 69(1): 325-333, 2022 01.
Article in English | MEDLINE | ID: mdl-34185636

ABSTRACT

OBJECTIVE: The increasing demand for unraveling cellular heterogeneity has boosted single cell metabolomics studies. However, current analytical methods are usually labor-intensive and hampered by lack of accuracy and efficiency. METHODS: we developed a first-ever automated single cell mass spectrometry system (named SCMS) that facilitated the metabolic profiling of single cells. In particular, extremely small droplets of sub nano-liter were generated to extract the single cells, and the underlying mechanism was verified theoretically and experimentally. This was crucial to minimize the dilution of the trace cellular contents and enhance the analytical sensitivity. Based on the precise 3D positioning of the pipette tip, we established a visual servoing robotic micromanipulation platform on which single cells were sequentially extracted, aspirated, and ionized, followed by the mass spectrometry analyses. RESULTS: With the SCMS system, inter-operator variability was eliminated and working efficiency was improved. The performance of the SCMS system was validated by the experiments on bladder cancer cells. MS and MS2 analyses of single cells enable us to identify several cellular metabolites and the underlying inter-cell heterogeneity. CONCLUSION: In contrast to traditional methods, the SCMS system functions without human intervention and realizes a robust single cell metabolic analysis. SIGNIFICANCE: the SCMS system upgrades the way how single cell metabolites were analyzed, and has the potential to be a powerful tool for single cell metabolomics studies.


Subject(s)
Robotic Surgical Procedures , Humans , Mass Spectrometry , Metabolomics , Micromanipulation , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...