Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 895: 165111, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37364838

ABSTRACT

Residential indoor PM2.5 were concurrently collected in Hong Kong, Guangzhou, Shanghai, and Xi'an during the winter and early spring seasons of 2016-2017, for updating the current knowledge of the spatial variation of indoor air pollution and the potential health risks in China. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) were characterized, and the associated inhalation cancer risks were assessed by a probabilistic approach. Higher levels of indoor PAHs were identified in Xi'an residences (averaged at 176.27 ng m-3) with those of other cities ranging from 3.07 to 15.85 ng m-3. Traffic-related fuel combustion was identified as a common contributor to indoor PAHs through outdoor infiltration for all investigated cities. Indoor PAHs profiles showed city-specific differences, while distinctions between profiles based on indoor activities or ambient air quality were limited. Similar with the total PAHs concentrations, the estimated toxic equivalencies (TEQ) with reference to benzo[a]pyrene in Xi'an residences (median at 18.05 ng m-3) were above the recommended value of 1 ng m-3 and were magnitudes higher than the other investigated cities with estimated median TEQ ranging from 0.27 to 1.55 ng m-3. Incremental lifetime cancer risk (ILCR) due to PAHs inhalation exposure was identified with a descending order of adult (median at 8.42 × 10-8) > adolescent (2.77 × 10-8) > children (2.20 × 10-8) > senior (1.72 × 10-8) for different age groups. Considering the lifetime exposure-associated cancer risk (LCR), potential risks were identified for residents in Xi'an as an LCR level over 1 × 10-6 was identified for half of the adolescent group (median at 8.96 × 10-7), and exceedances were identified for about 90 % of the groups of adults (10th percentile at 8.29 × 10-7) and seniors (10th percentile at 1.02 × 10-6). The associated LCR estimated for other cities were relatively insignificant.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Adult , Adolescent , Child , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Seasons , Cities , China , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Environmental Monitoring
2.
Sci Total Environ ; 881: 163476, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37075995

ABSTRACT

Salt deterioration has been found to be a major threat to wall paintings at culture heritage sites in arid areas along the Silk Road. However, the routes of water migration that cause the efflorescence have not been identified, and consequently, effective preservation measures have not been developed. Our microanalysis, by interrogating 93,727 individual particles collected in a Mogao cave in Dunhuang, China, revealed that capillary rise of water in the earthen plasters drives the deterioration of wall paintings. The vertical distribution of chloride and sulfate particles in the salt efflorescence and their morphologies implied a migration of salts through capillary rise and subsequent crystal growth under environmental conditions exerts sufficient pressure to cause surface decay and loss. These results indicate that blocking the water capillary rise under the porous structures is likely the most effective route to prevent rapid deterioration of the ancient wall paintings. These salt transport and deterioration mechanisms in an arid environment, suggests that a wide range of management strategies and protective measures could be developed to effectively preserve heritage sites in arid regions, especially along the Silk Road.

3.
Sci Total Environ ; 834: 155315, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447171

ABSTRACT

The physicochemical characteristics of dust particles from the Taklimakan Desert are the fundamental basis for the assessment of particle variation during their long-distance transport and the subsequent environmental effects. In this study, 43,222 individual sandblasting dust particles, which were mobilised using a chamber with surface soils of sand dunes and Gobi (the two types of surfaces constituting the desert) were analysed to statistically quantify the shape and mineralogical composition of dust particles from the desert. The mode of the number-size distribution of particles from the sand dunes was 0.5-0.7 µm and that of particles from Gobi soils was approximately 1.0 µm. In contrast, the distributions of particle number fractions versus shape factors such as aspect ratio and roundness were similar, despite the irregular shape of the particles. Clay mineral particles were most frequently composed of chlorite and kaolinite, accounting for 66.74 ± 12.08% of the particles from both types of soils. Quartz and feldspar particles accounted for 9.57 ± 4.52% and 2.84 ± 1.28%, respectively. The mineralogical composition of particles smaller than 1.0 µm, in both soil types, was dominated by chlorite (Al-Si-O-Mg), kaolinite (Ai-Si-O), and quartz (SiO). Gypsum (CaS) and halite (NaCl) were the major salt components in particles from both soil types. Gypsum-containing particles existed in a wide size range and occupied 3.42%-8.98% of the particles from Gobi soils and 0.27%-2.18% of the particles from sand dunes. Most gypsum-containing particles were mixed with Si-containing minerals in the form of silicate or aluminosilicate; the remaining gypsum-containing particles were gypsum crystals or mixtures of gypsum and Ca-containing minerals. These results provide a comprehensive statistical profile of dust particles released by the sandblasting process from the Taklimakan Desert to the atmosphere.


Subject(s)
Air Pollutants , Dust , Air Pollutants/analysis , Calcium Sulfate/analysis , Dust/analysis , Environmental Monitoring/methods , Kaolin , Minerals/analysis , Particle Size , Quartz/analysis , Sand , Soil
4.
Environ Sci Pollut Res Int ; 26(31): 31913-31923, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31489544

ABSTRACT

The chemical and cytotoxicity properties of fine particulate matter (PM2.5) at indoor and outdoor environment were characterized in Xi'an, China. The mass concentrations of PM2.5 in urban areas (93.29~96.13 µg m-3 for indoor and 124.37~154.52 µg m-3 for outdoor) were higher than suburban (68.40 µg m-3 for indoor and 96.18 µg m-3 for outdoor). The PM2.5 concentrations from outdoor environment due to fossil fuel combustion were higher than indoor environment. An indoor environment without central heating demonstrated higher organic carbon-to-elemental carbon (OC / EC) ratios and n-alkanes values that potentially attributed to residential coal combustion activities. The cell viability of human epithelial lung cells showed dose-dependent decrease, while nitric oxide (NO) and oxidative potential showed dose-dependent increase under exposure to PM2.5. The variations of bioreactivities could be possibly related to different chemical components from different sources. Moderate (0.4 < R < 0.6) to strong (R > 0.6) correlations were observed between bioreactivities and elemental carbon (EC)/secondary aerosols (NO3-, SO42-, and NH4+)/heavy metals (Ni, Cu, and Pb). The findings suggest PM2.5 is associated with particle induced oxidative potential, which are further responsible for respiratory diseases under chronic exposure.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Particulate Matter/analysis , Particulate Matter/toxicity , Aerosols/analysis , Air Pollutants/chemistry , Air Pollutants/toxicity , Carbon/analysis , Cell Line , China , Cities , Dose-Response Relationship, Drug , Environmental Monitoring , Epithelial Cells/drug effects , Heating , Humans , Particle Size , Pulmonary Alveoli/cytology , Seasons , Toxicity Tests
5.
Sci Total Environ ; 628-629: 772-781, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29454217

ABSTRACT

Many studies indicate that the atmospheric environment over the southern part of the Tibetan Plateau is influenced by aged biomass burning particles that are transported over long distances from South Asia. However, our knowledge of the particles emitted locally (within the plateau region) is poor. We collected aerosol particles at four urban sites and one remote glacier site during a scientific expedition to the southeastern Tibetan Plateau in spring 2010. Weather and backward trajectory analyses indicated that the particles we collected were more likely dominated by particles emitted within the plateau. The particles were examined using an electron microscope and identified according to their sizes, shapes and elemental compositions. At three urban sites where the anthropogenic particles were produced mainly by the burning of firewood, soot aggregates were in the majority and made up >40% of the particles by number. At Lhasa, the largest city on the Tibetan Plateau, tar balls and mineral particles were also frequently observed because of the use of coal and natural gas, in addition to biofuel. In contrast, at the glacier site, large numbers of chain-like soot aggregates (~25% by number) were noted. The morphologies of these aggregates were similar to those of freshly emitted ones at the urban sites; moreover, physically or chemically processed ageing was rarely confirmed. These limited observations suggest that the biomass burning particles age slowly in the cold, dry plateau air. Anthropogenic particles emitted locally within the elevated plateau region may thus affect the environment within glaciated areas in Tibet differently than anthropogenic particles transported from South Asia.

6.
Sci Total Environ ; 590-591: 14-21, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28284114

ABSTRACT

We present a study of aerosol light absorption by using a 7-wavelength Aethalometer model AE33 at an urban site (Lhasa) and a remote site (Lulang) in the Tibetan Plateau. Approximately 5 times greater aerosol absorption values were observed at Lhasa (53±46Mm-1 at 370nm and 20±18Mm-1 at 950nm, respectively) in comparison to Lulang (15±19Mm-1 at 370nm and 4±5Mm-1 at 950nm, respectively). Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths. The brown carbon (BrC) absorption at 370nm is 32±15% of the total aerosol absorption at Lulang, whereas it is 8±6% at Lhasa. Higher value of absorption Ångström exponent (AAE, 370-950nm) was obtained for Lulang (1.18) than that for Lhasa (1.04) due to the presence of BrC. The AAEs (370-950nm) of BrC were directly extracted at Lulang (3.8) and Lhasa (3.3). The loading compensation parameters (k) increased with wavelengths for both sites, and lower values were obtained at Lulang than those observed at Lhasa for all wavelengths. This study underlines the relatively high percentage of BrC absorption contribution in remote area compared to urban site over the Tibetan Plateau.

7.
Proc Natl Acad Sci U S A ; 113(48): 13630-13635, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849598

ABSTRACT

Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Sulfates/adverse effects , Aerosols/analysis , Air Pollution/analysis , China , Climate , Environmental Monitoring/methods , Humans , London , Nitrates , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/chemistry , Nitrogen Oxides/analysis , Particle Size , Particulate Matter/adverse effects , Sulfates/analysis , Sulfur Oxides/analysis , Weather
8.
Sci Total Environ ; 479-480: 151-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24561294

ABSTRACT

The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36 µg STP-m(-3) during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21 µg STP-m(-3) was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175 nm, and a small secondary lognormal mode with MMD of 470-500 nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880 nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Soot/analysis , China
9.
J Air Waste Manag Assoc ; 61(11): 1150-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22168098

ABSTRACT

An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.


Subject(s)
Air Pollutants/chemistry , Altitude , Particle Size , Particulate Matter/chemistry , Seasons , Air Pollution , China , Environmental Monitoring , Solubility , Time Factors , Water
10.
J Air Waste Manag Assoc ; 61(9): 914-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22010376

ABSTRACT

Day- and nighttime total suspended particulate matter was collected inside and outside Emperor Qin's Terra-Cotta Museum in winter and summer 2008. The purpose was to characterize the winter and summer differences of indoor airborne particles in two display halls with different architectural and ventilation conditions, namely the Exhibition Hall and Pit No. 1. The morphology and elemental composition of two season samples were investigated using scanning electron microscopy and energy dispersive X-ray spectrometry. It is found that the particle size, particle mass concentration, and particle type were associated with the visitor numbers in the Exhibition Hall and with the natural ventilation in Pit No. 1 in both winter and summer. Evident winter and summer changes in the composition and physicochemical properties of the indoor suspended particulate matters were related to the source emission and the meteorological conditions. Particle mass concentrations in both halls were higher in winter than in summer. In winter, the size of the most abundant particles at the three sites were all between 0.5 and 1.0 microm, whereas in summer the peaks were all located at less than 0.5 microm. The fraction of sulfur-containing particles was 2-7 times higher in winter than in summer. In addition to the potential soiling hazard, the formation and deposition of sulfur-containing particles in winter may lead to the chemical and physical weathering of the surfaces of the terra-cotta statues.


Subject(s)
Air Pollution, Indoor/analysis , Particulate Matter/analysis , Seasons , China , Environmental Monitoring , Microclimate , Microscopy, Electron, Scanning , Museums , Particle Size , X-Ray Diffraction
11.
Sci Total Environ ; 407(20): 5319-27, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19640566

ABSTRACT

Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Construction Materials , Environmental Monitoring/methods , Museums , Particulate Matter/analysis , Aerosols/analysis , China , Humans , Microscopy, Electron, Scanning , Particle Size , Seasons , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...