Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acid Ther ; 33(5): 287-305, 2023 10.
Article in English | MEDLINE | ID: mdl-37590469

ABSTRACT

This white paper summarizes the recommendations of the absorption, distribution, metabolism, and excretion (ADME) Subcommittee of the Oligonucleotide Safety Working Group for the characterization of absorption, distribution, metabolism, and excretion of oligonucleotide (ON) therapeutics in nonclinical studies. In general, the recommended approach is similar to that for small molecule drugs. However, some differences in timing and/or scope may be warranted due to the greater consistency of results across ON classes as compared with the diversity among small molecule classes. For some types of studies, a platform-based approach may be appropriate; once sufficient data are available for the platform, presentation of these data should be sufficient to support development of additional ONs of the same platform. These recommendations can serve as a starting point for nonclinical study design and foundation for discussions with regulatory agencies.


Subject(s)
Oligonucleotides , Oligonucleotides/therapeutic use , Oligonucleotides/pharmacokinetics
2.
Mol Ther Nucleic Acids ; 28: 558-570, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35592494

ABSTRACT

A large hexanucleotide (G4C2) repeat expansion in the first intronic region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Several mechanisms have been proposed to explain how the repeat expansion drives disease, and we hypothesize that a variant-selective approach, in which transcripts affected by the repeat expansion are preferentially decreased, has the potential to address most of them. We report a stereopure antisense oligonucleotide, WVE-004, that executes this variant-selective mechanism of action. WVE-004 dose-dependently and selectively reduces repeat-containing transcripts in patient-derived motor neurons carrying a C9orf72-repeat expansion, as well as in the spinal cord and cortex of C9 BAC transgenic mice. In mice, selective transcript knockdown was accompanied by substantial decreases in dipeptide-repeat proteins, which are pathological biomarkers associated with the repeat expansion, and by preservation of healthy C9orf72 protein expression. These in vivo effects were durable, persisting for at least 6 months. These data support the advancement of WVE-004 as an investigational stereopure antisense oligonucleotide targeting C9orf72 for the treatment of C9orf72-associated ALS or FTD.

3.
Nat Commun ; 12(1): 847, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558503

ABSTRACT

A large G4C2-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neuronal degeneration associated with this expansion arises from a loss of C9orf72 protein, the accumulation of RNA foci, the expression of dipeptide repeat (DPR) proteins, or all these factors. We report the discovery of a new targeting sequence that is common to all C9orf72 transcripts but enables preferential knockdown of repeat-containing transcripts in multiple cellular models and C9BAC transgenic mice. We optimize stereopure oligonucleotides that act through this site, and we demonstrate that their preferential activity depends on both backbone stereochemistry and asymmetric wing design. In mice, stereopure oligonucleotides produce durable depletion of pathogenic signatures without disrupting protein expression. These oligonucleotides selectively protect motor neurons harboring C9orf72-expansion mutation from glutamate-induced toxicity. We hypothesize that targeting C9orf72 with stereopure oligonucleotides may be a viable therapeutic approach for the treatment of C9orf72-associated neurodegenerative disorders.


Subject(s)
C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Mutation/genetics , Oligonucleotides/chemistry , Oligonucleotides/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/chemistry , Exons/genetics , Glutamates/toxicity , Introns/genetics , Mice , Motor Neurons/drug effects , Motor Neurons/pathology , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...