Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
1.
Hortic Res ; 11(8): uhae177, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108584

ABSTRACT

Citrus reticulata 'Chachi' (CRC) has long been recognized for its nutritional benefits, health-promoting properties, and pharmacological potential. Despite its importance, the bioactive components of CRC and their biosynthetic pathways have remained largely unexplored. In this study, we introduce a gap-free genome assembly for CRC, which has a size of 312.97 Mb and a contig N50 size of 32.18 Mb. We identified key structural genes, transcription factors, and metabolites crucial to flavonoid biosynthesis through genomic, transcriptomic, and metabolomic analyses. Our analyses reveal that 409 flavonoid metabolites, accounting for 83.30% of the total identified, are highly concentrated in the early stage of fruit development. This concentration decreases as the fruit develops, with a notable decline in compounds such as hesperetin, naringin, and most polymethoxyflavones observed in later fruit development stages. Additionally, we have examined the expression of 21 structural genes within the flavonoid biosynthetic pathway, and found a significant reduction in the expression levels of key genes including 4CL, CHS, CHI, FLS, F3H, and 4'OMT during fruit development, aligning with the trend of flavonoid metabolite accumulation. In conclusion, this study offers deep insights into the genomic evolution, biosynthesis processes, and the nutritional and medicinal properties of CRC, which lay a solid foundation for further gene function studies and germplasm improvement in citrus.

2.
Front Psychol ; 15: 1351032, 2024.
Article in English | MEDLINE | ID: mdl-39156820

ABSTRACT

Job burnout and work pressure are pivotal concerns in human resource management and workplace mental health, profoundly impacting organizational sustainability and individual well-being. Grounded in the person-environment fit theory, this empirical study quantitatively investigates the psychological mechanisms of person-job fit and person-organization fit in job burnout, highlighting the mediating role of work pressure. To test our hypotheses, we investigated 477 employees from 63 IT enterprises around China's Pearl River Delta region. The findings reveal that person-job fit is negatively associated with job burnout and work pressure, while work pressure positively influences job burnout, partially mediating the relationship between person-job fit and job burnout. Similarly, person-organization fit negatively affects job burnout and work pressure. However, its direct influence on job burnout is insignificant, indicating that work pressure fully mediates the relationship between person-organization fit and job burnout. These findings are consistent with the person-environment fit theory, enhancing our understanding of how individuals fit with their jobs and how organizations affect job burnout through work pressure. This study offers valuable insights for organizations seeking to mitigate burnout and promote employee well-being.

3.
Hum Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014290

ABSTRACT

Cervical cancer poses a significant health burden for women globally, and the rapid proliferation of cervical cancer cells greatly worsens patient prognosis. Long non-coding RNAs (lncRNAs) play a crucial role in regulating tumor cell proliferation. However, the involvement of lncRNAs in cervical cancer cell proliferation remains unclear. In this study, we investigated the lncRNA SIX1-1, which was found to be upregulated in cervical cancer tissues and cell lines. Functional assays revealed that knockdown of SIX1-1 inhibited cell proliferation in vitro and reduced tumor growth in vivo. Mechanistically, SIX1-1 was predominantly localized in the nucleus and could bind with DNMT1 protein. The expression of SIX1-1 enhanced the interaction of DNMT1 with RASD1 promoter, leading to the methylation of the promoter and decreased mRNA transcription. Then RASD1 downregulation activated the cAMP/PKA/CREB signaling pathway, promoting cell proliferation. Rescue experiments showed that knockdown of RASD1 restored the inhibited cell proliferation caused by decreased expression of SIX1-1, indicating that RASD1 acted as the functional mediator of SIX1-1. In conclusion, SIX1-1 promoted cervical cancer cell proliferation by modulating RASD1 expression. This suggests that targeting the SIX1-1/RASD1 axis could be a potential antitumor strategy for cervical cancer.

4.
Transl Pediatr ; 13(6): 987-993, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984022

ABSTRACT

Background: Acral persistent papular mucinosis (APPM) is a rare idiopathic subtype of localized lichen myxedematosus. To date, there have been less than 41 APPM cases reported worldwide, however, almost all patients were older than 18 years of age. A 7-year-old child was first reported in this paper. Case Description: A 7-year-old boy was admitted to our hospital with a solitary skin-colored papule on the radial side of the middle segment of his right index finger. The patient wanted to know the exact diagnosis and remove it because the flexion movement of the middle segment had been affected. Thus, a surgery was performed. Histopathological examination of a biopsy specimen obtained from the papule on the radial side of the middle segment of his right index finger showed a focal and well-circumscribed deposit of mucin in the papillary and middermis. The deposit never extended deeply into the reticular dermis. Mucin spared a subepidermal area in the papillary dermis. Alcian blue stains can highlight the mucin. The papule was histologically diagnosed as an APPM and excised surgically. The wound gradually healed after the operation, and no obvious recurrence, scar or other discomfort was observed during follow-up so far. Conclusions: To the best of our knowledge, this is the rare case of a child APPM presenting as a solitary papule affecting the flexion movement of the middle segment. Since it is a rare disease, we report this case to contribute to future research on the diagnosis and pathogenesis of APPM.

5.
Zhongguo Zhen Jiu ; 44(7): 765-9, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986588

ABSTRACT

OBJECTIVE: To explore the clinical effect of acupuncture combined with repeated transcranial magnetic stimulation (rTMS) for mild to moderate post-stroke depression. METHODS: Ninety patients with mild to moderate post-stroke depression were randomly divided into a combination group (30 cases, 4 cases dropped out), an acupuncture group (30 cases, 3 cases dropped out) and a rTMS group (30 cases, 5 cases dropped out). All the three groups received basic treatment, the combination group was treated with acupuncture combined with rTMS, the acupuncture group was treated with acupuncture, and the rTMS group was treated with rTMS. The acupuncture was applied at Baihui (GV 20), Yintang (GV 24+) , Danzhong (CV 17) and bilateral Shenmen (HT 7), Taichong (LR 3), Neiguan (PC 6). All the three groups were treated once a day, 5 times a week for 4 weeks. The Hamilton depression scale (HAMD-17) score, Pittsburgh sleep quality index (PSQI) score and event-related potential were compared among the three groups before and after treatment. RESULTS: After treatment, the HAMD-17 scores and PSQI scores in the three groups were reduced compared with those before treatment (P<0.01) , and the HAMD-17 score and PSQI score in the combination group were lower than those in the acupuncture group and the rTMS group (P<0.05). After treatment, the latency of event-related potential (P300, mismatch negativityï¼»MMNï¼½) in the three groups was shortened compared with that before treatment (P<0.05), and the latency of event-related potential in the combination group was shorter than that in the acupuncture group and the rTMS group (P<0.05). CONCLUSION: Acupuncture combined with rTMS can effectively alleviate the depressive state of patients with mild to moderate post-stroke depression, improve the sleep quality and the latency of event-related potential P300 and MMN.


Subject(s)
Acupuncture Therapy , Depression , Stroke , Transcranial Magnetic Stimulation , Humans , Male , Female , Middle Aged , Aged , Depression/therapy , Depression/etiology , Stroke/complications , Stroke/therapy , Combined Modality Therapy , Acupuncture Points , Treatment Outcome , Adult
6.
Biochem Genet ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970722

ABSTRACT

BACKGROUND: Increasing evidence had proved that some circular RNA (circRNA) exerted critical roles in tumors progression by functioning as "microRNAs (miRNAs) sponges" to regulate their targeted genes. METHODS: circFAM114A2 and miR-647 expression was measured in CRC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value of circFAM114A2 evaluated by Kaplan-Meier survival curve. Subsequently, wounding healing and transwell assays were performed to assess cell proliferation, migration, and invasion. RNA pull-down and dual-luciferase reporter assays were used to confirm the interactions between circFAM114A2, miR-647, and DAB2IP. RESULTS: CircFAM114A2 was notably downregulated in CRC tissues and cells, and low circFAM114A2 expression indicated the poor prognosis of CRC patients. Next, overexpression of circFAM114A2 suppressed CRC cells proliferation, migration, and invasion in vitro and impede CRC tumor growth in vivo. Mechanically, circFAM114A2 competitively bound to miR-647 and upregulated its target gene DAB2IP expression in CRC cells. CONCLUSION: Our results indicated that circFAM114A2/miR-647/DAP2IP axis played an important role in CRC progression, suggesting that circFAM114A2 might be a novel therapeutic target in patients with CRC.

7.
Heliyon ; 10(12): e32304, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948033

ABSTRACT

Background: Several respiratory infections outbreaks have been observed in mainland China after reduction of non-pharmaceutical interventions. Other countries have seen increases in respiratory infections outside typical seasons post-COVID-19, warranting investigation into underlying causes. Methods: We established monitoring networks for suspected respiratory infection in 14 tertiary hospitals nationwide. PCR for SARS-CoV-2, influenza A and B were performed on 3708 respiratory specimens and deep sequencing were conducted to identify co-infections or newly emerging microbes in 2023. Viral evolutionary analysis was completed. We retrospectively detected serum antibody level for various respiratory pathogens from 4324 adults without respiratory infections over 7 years to observe its dynamic curves. Findings: SARS-CoV-2 and influenza A were the main pathogens during outbreaks in 2023, bacterial-virus and bacterial-bacterial co-infections were most detected, but community co-infections didn't significantly increase pneumonia incidence. Different SARS-CoV-2 and influenza variants were present in different outbreaks, and no novel pathogens were found. The epidemiological patterns of influenza A, COVID-19 and etc. were altered, exhibiting characteristics of being "staggered" compared to most global regions, and potentially led to "overlapping prevalence". Binding antibody testing showed regular fluctuation, without significant decrease against common respiratory pathogens in adults. Influenza A antibody stimulation was attenuated during the 2023 outbreak. Conclusions: "Misaligned" alteration in seasonal respiratory disease patterns possibly caused combined epidemics, leading to cases spike in China, 2023. In adults, antibody levels didn't show significant decline, but reduced immune response to influenza during 2020-2023 emphasizes the need for consistent vaccination during pandemics.

8.
Int J Biol Macromol ; 274(Pt 2): 133508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944067

ABSTRACT

Agave species are typical crassulacean acid metabolism (CAM) plants commonly cultivated to produce beverages, fibers, and medicines. To date, few studies have examined hemicellulose biosynthesis in Agave H11648, which is the primary cultivar used for fiber production. We conducted PacBio sequencing to obtain full-length transcriptome of five agave tissues: leaves, shoots, roots, flowers, and fruits. A total of 41,807 genes were generated, with a mean length of 2394 bp and an annotation rate of 97.12 % using public databases. We identified 42 glycosyltransferase genes related to hemicellulose biosynthesis, including mixed-linkage glucan (1), glucomannan (5), xyloglucan (16), and xylan (20). Their expression patterns were examined during leaf development and fungal infection, together with hemicellulose content. The results revealed four candidate glycosyltransferase genes involved in xyloglucan and xylan biosynthesis, including glucan synthase (CSLC), xylosyl transferase (XXT), xylan glucuronyltransferase (GUX), and xylan α-1,3-arabinosyltransferase (XAT). These genes can be potential targets for manipulating xyloglucan and xylan traits in agaves, and can also be used as candidate enzymatic tools for enzyme engineering. We have provided the first full-length transcriptome of agave, which will be a useful resource for gene identification and characterization in agave species. We also elucidated the hemicellulose biosynthesis machinery, which will benefit future studies on hemicellulose traits in agave.


Subject(s)
Agave , Gene Expression Regulation, Plant , Glycosyltransferases , Polysaccharides , Transcriptome , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Agave/genetics , Polysaccharides/biosynthesis , Xylans/metabolism , Xylans/biosynthesis , Gene Expression Profiling , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Geriatr Nurs ; 58: 44-51, 2024.
Article in English | MEDLINE | ID: mdl-38761587

ABSTRACT

BACKGROUND: This study aims to explore the nursing effect of a multimodal pre-rehabilitation programme guided by BCW theory on elderly women patients with breast cancer. METHODS: The participants were divided into two groups. The study group was administered with the pre-rehabilitation model guided by BCW theory; the control group was administered with conventional methods. The rehabilitation effects of the two groups were compared.. RESULTS: The scores of RISC, PTGI and FACT-B were higher in the study group(P < 0.05). The SUPPH score and ROM compliance rate were higher in the study group (P < 0.05) (96% vs 72%). The avoidance score and yield score were lower in the study group(P < 0.05). CONCLUSION: A multimodal pre-rehabilitation program guided by BCW theory can significantly improve the quality of life and functional status of elderly women patients with breast cancer, and its popularisation and application are recommended.


Subject(s)
Breast Neoplasms , Quality of Life , Humans , Female , Breast Neoplasms/rehabilitation , Breast Neoplasms/psychology , Aged
10.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732036

ABSTRACT

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Subject(s)
Bivalvia , Pectinidae , Receptors, Somatostatin , Animals , Pectinidae/genetics , Pectinidae/growth & development , Pectinidae/metabolism , Bivalvia/genetics , Bivalvia/growth & development , Bivalvia/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Phylogeny , RNA Interference , Gene Expression Regulation, Developmental
11.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775012

ABSTRACT

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Subject(s)
Cell Adhesion , Cell Differentiation , Dental Pulp , Electric Stimulation , Odontogenesis , Polyvinyls , Stem Cells , Dental Pulp/cytology , Cell Differentiation/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Humans , Cell Adhesion/drug effects , Odontogenesis/drug effects , Polyvinyls/chemistry , Animals , Cells, Cultured , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Surface Properties
12.
Neurochem Int ; 176: 105728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561150

ABSTRACT

Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.


Subject(s)
Depression , Neuroinflammatory Diseases , Protein-Arginine N-Methyltransferases , Animals , Male , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/genetics , Depression/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/biosynthesis , Rats, Sprague-Dawley , Stress, Psychological/drug therapy , Stress, Psychological/genetics , Stress, Psychological/metabolism
13.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612756

ABSTRACT

Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (ß-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.


Subject(s)
Dioxygenases , Pectinidae , Animals , Humans , beta Carotene , Muscle, Skeletal , Carotenoids , Pectinidae/genetics , Dioxygenases/genetics
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473861

ABSTRACT

Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Ammonia , Dysbiosis , Penaeidae/genetics , Hepatopancreas
15.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38503280

ABSTRACT

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Subject(s)
Cholesterol , Hormones , RNA-Binding Proteins , Animals , Humans , Mice , Cholesterol/metabolism , Hormones/genetics , Hormones/metabolism , Hypercholesterolemia/metabolism , Liver/metabolism , Signal Transduction , RNA-Binding Proteins/metabolism
16.
Hortic Res ; 11(1): uhad262, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38304333

ABSTRACT

Due to the protracted transgenic timeline and low efficiency in stable genetic transformation of woody plants, there has been limited exploration of real-time organelle imaging within stable transgenic woody plant cells. Here, we established an efficient in vivo genetic transformation system for woody plants using an Agrobacterium rhizogenes-mediated approach. This system was successfully validated in multiple perennial woody species. Using citrus as a model, we introduced organelle-targeted fluorescent reporters via genetic transformation and investigated their subcellular localization and dynamics using advanced imaging techniques, such as confocal microscopy and live-cell imaging. Moreover, we subjected transgenic MT-GFP-labeled mitochondria in root cells to stress conditions simulating agricultural adversities faced by fruit crops. The stress-induced experiments revealed notable alterations in mitochondrial morphology. Our study contributes novel insights into membrane trafficking processes, protein localization dynamics, and cellular physiology in woody plants, while also providing stable and efficient genetic transformation methods for perennial woody species.

17.
Environ Technol ; : 1-10, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38312076

ABSTRACT

A series of activated carbon was obtained from rape straw by chemical modification with phosphoric acid (H3PO4). The activated carbon was characterized and the adsorption capacity for Rhodamine B (RhB) from water was analysed. The SEM images showed that PRC-40 is a porous material and the BET analysis revealed a high surface area of 1720 m2/g with the coexistence of micropores and mesopores. The FTIR spectra determined the presence of oxygenated functional groups at its surface. The XPS spectra revealed that the content of carboxyl and metaphosphate groups in the modified activated carbon significantly increased, and this is conducive to the adsorption reaction. The XRD pattern showed the amorphous nature of carbon. The effect of significant parameters, such as the concentration of H3PO4 for modification and pH value, has been discussed. The kinetic data showed that the pseudo-second-order model is predominant. Besides, the Langmuir model was compatible well with the equilibrium data, and the maximum adsorption capacity of the activated carbon modified by H3PO4 was 2882.84 mg/g. Therefore, agricultural waste and rape straw can be used to prepare effective adsorbents for the application with the removal of dye from wastewater.

18.
Ecotoxicol Environ Saf ; 273: 116146, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412634

ABSTRACT

Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.


Subject(s)
Bivalvia , Dinoflagellida , Gastrointestinal Microbiome , Pectinidae , Shellfish Poisoning , Toxins, Biological , Animals , Dinoflagellida/chemistry , Dysbiosis , Shellfish
19.
Carcinogenesis ; 45(6): 378-386, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38375679

ABSTRACT

Estrogen plays a crucial role in ovarian tumorigenesis. Phytoestrogens (PEs) are a type of daily dietary nutrient for humans and possess a mild estrogenic characteristic. This study aimed to assess the correlation of the consumption of dietary PEs with ovarian cancer risk using data in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Participants were enrolled in PLCO from 1993 to 2001. Hazard ratios (HR) and 95% confidence intervals (CI) were utilized to determine the association between the intake of PEs and ovarian cancer occurrence, which were calculated by the Cox proportional hazards regression analysis. In total, 24 875 participants were identified upon completion of the initial dietary questionnaire (DQX). Furthermore, the analysis also included a total of 45 472 women who filled out the diet history questionnaire (DHQ). Overall, after adjustment for confounders, the dietary intake of total PEs was significantly associated with the risk of ovarian cancer in the DHQ group (HRQ4vsQ1 = 0.69, 95% CI: 0.50-0.95; P for trend = 0.066). Especially, individuals who consumed the highest quartile of isoflavones were found to have a decreased risk of ovarian cancer in the DHQ group (HRQ4vsQ1 = 0.68, 95% CI: 0.50-0.94; P for trend = 0.032). However, no such significant associations were observed for the DQX group. In summary, this study suggests that increased dietary intake of total PEs especially isoflavones was linked with a lower risk for developing ovarian cancer. More research is necessary to validate the findings and explore the potential mechanisms.


Subject(s)
Diet , Ovarian Neoplasms , Phytoestrogens , Humans , Female , Phytoestrogens/administration & dosage , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/prevention & control , Ovarian Neoplasms/etiology , Prospective Studies , Middle Aged , Risk Factors , Male , Aged , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Lung Neoplasms/prevention & control , Surveys and Questionnaires , Isoflavones/administration & dosage , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/prevention & control , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/etiology
20.
CRISPR J ; 7(1): 29-40, 2024 02.
Article in English | MEDLINE | ID: mdl-38353621

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor (MC1R)-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system. We then carried out whole-genome sequencing of two MC1R-edited pigs and two cloned wild-type siblings, together with the donor cells, to assess the genome-wide presence of single-nucleotide variants and small insertions and deletions (indels) and found only one candidate off-target indel in both MC1R-edited pigs. In summary, our study indicates that the minimal off-targeting effect induced by CRISPR-Cas9 may not be a major concern in gene-edited pigs created by SCNT.


Subject(s)
CRISPR-Cas Systems , Receptor, Melanocortin, Type 1 , Animals , Swine/genetics , Receptor, Melanocortin, Type 1/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Mutation , INDEL Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL