Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Gut Microbes ; 16(1): 2383353, 2024.
Article in English | MEDLINE | ID: mdl-39105259

ABSTRACT

The role of the gut microbiota in the occurrence and progression of primary biliary cholangitis (PBC) is not fully understood. First, the fecal microbiota of patients with PBC (n = 4) (PBC-FMT) or healthy individuals (n = 3) (HC-FMT) was transplanted into pseudo germ-free mice or 2OA-BSA-induced PBC models. The functions, histology and transcriptome of the liver, and microbiota and metabolome of the feces were analyzed. Second, the liver transcriptomes of PBC patients (n = 7) and normal individuals (n = 7) were analyzed. Third, the liver transcriptomes of patients with other liver diseases were collected from online databases and compared with our human and mouse data. Our results showed that PBC-FMT increased the serum ALP concentration, total bile acid content, liver injury and number of disease-related pathways enriched with upregulated liver genes in pseudo germ-free mice and increased the serum glycylproline dipeptidyl aminopeptidase level and liver damage in a 2OA-BSA-induced PBC model. The gut microbiota and metabolome differed between PBC-FMT and HC-FMT mice and reflected those of their donors. PBC-FMT tended to upregulate hepatic immune and signal transduction pathways but downregulate metabolic pathways, as in some PBC patients. The hematopoietic cell lineage, Toll-like receptor, and PPAR signaling pathway were not affected in patients with alcoholic hepatitis, HBV, HCV, HCV cirrhosis, or NASH, indicating their potential roles in the gut microbiota affecting PBC. In conclusion, the altered gut microbiota of PBC patients plays an important role in the occurrence and progression of PBC. The improvement of the gut microbiota is worthy of in-depth research and promotion as a critical aspect of PBC prevention and treatment.


Subject(s)
Disease Models, Animal , Feces , Gastrointestinal Microbiome , Liver Cirrhosis, Biliary , Liver , Animals , Humans , Mice , Liver Cirrhosis, Biliary/microbiology , Liver Cirrhosis, Biliary/pathology , Liver Cirrhosis, Biliary/metabolism , Liver/pathology , Liver/metabolism , Liver/microbiology , Feces/microbiology , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Fecal Microbiota Transplantation , Male , Bile Acids and Salts/metabolism , Transcriptome , Mice, Inbred C57BL
2.
Phytomedicine ; 132: 155848, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964157

ABSTRACT

BACKGROUND: Borneol, a highly lipid-soluble bicyclic terpene mainly extracted from plants, is representative of monoterpenoids. Modern medicine has established that borneol exhibits a range of pharmacological activities and used in the treatment of many diseases, particularly Cardio-cerebrovascular diseases (CVDs). The crucial role in enhancing drug delivery and improving bioavailability has attracted much attention. In addition, borneol is also widely utilized in food, daily chemicals, fragrances, and flavors industries. PURPOSE: This review systematically summarized the sources, pharmacological activities and mechanisms, clinical trial, pharmacokinetics, toxicity, and application of borneol. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. This review will provide a valuable resource for those pursuing researches on borneol inspiring the pharmacological applications in the medicine, food and daily chemical products, and developing of new drugs containing borneol or its derivatives. METHODS: This review searched the keywords ("borneol" or "bornyl esters") and ("pharmacology" or "Traditional Chinese medicine" or "Cardio-cerebrovascular diseases" or "blood-brain barrier" or "ischemic stroke" or "nanomaterials" or "neurodegenerative diseases" or "diabetes" or "toxicity") in Web of Science, PubMed, Google Scholar and China National Knowledge Infrastructure (CNKI) from January 1990 to May 2024. The search was limited to articles published in English and Chinese. RESULTS: Borneol exhibits extensive pharmacological activities including anti-inflammatory effects, analgesia, antioxidation, and has the property of crossing biological barriers and treating CVDs. The intrinsic molecular mechanisms are involved in multiple components, such as regulation of various key factors (including Tumor necrosis factor-α, Nuclear factor kappa-B, Interleukin-1ß, Malondialdehyde), inhibiting transporter protein function, regulating biochemical levels, and altering physical structural changes. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. CONCLUSION: The pharmacological properties and applications of borneol are promising, including anti-inflammatory, analgesic, antimicrobial, and antioxidant properties, as well as enhancing drug delivery and treating CVDs. However, its clinical application is hindered by the limited research on safety, efficacy, and pharmacokinetics. Therefore, this review systemically summarized the advances on pharmacological activities and mechanisms of the borneol. Standardized clinical trials and exploration of synergistic effects with other drugs were also are outlined.

3.
Vet Microbiol ; 296: 110166, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968694

ABSTRACT

Streptococcus suis (S. suis) disease is a prevalent zoonotic infectious threat that elicits a systemic inflammatory response in both swine and humans, frequently culminating in high mortality rates. The excessive inflammation triggered by S. suis infection can precipitate tissue damage and sudden death; however, a comprehensive strategy to mitigate this inflammatory response remains elusive. Our study examines the role of NLRP6 in S. suis infection, with a particular focus on its involvement in pathogen regulation. A marked upregulation of NLRP6 was observed in peritoneal macrophages post-infection with S. suis SC19 strain, consequently activating the NLRP6 inflammasome. Furthermore, SC19 infection was found to augment the secretion of pro-inflammatory cytokines IL-1ß via NLRP6 activation, while NLRP6 deficiency mitigates the invasion and adhesion of SC19 to macrophages. In vivo models revealed that NLRP6 deletion enhanced survival rates of SC19-infected mice, alongside a reduction in tissue bacterial load and inflammatory cytokine levels. NLRP6-/- mice were shown to exhibit attenuated inflammatory responses in pulmonary, hepatic, and splenic tissues post-SC19 infection, as evidenced by lower inflammation scores. Flow cytometry analyses further substantiated that NLRP6 is involved in modulating macrophage and neutrophil recruitment during infection. Our findings suggest that NLRP6 negatively regulates host resistance against S. suis infection; its absence results in reduced mortality, bacterial colonization, and a milder inflammatory response. Elucidating the mechanism of NLRP6 in S. suis-induced inflammation provides novel insights and theoretical underpinnings for the prophylaxis and therapeutics of S. suis diseases.


Subject(s)
Mice, Inbred C57BL , Streptococcal Infections , Streptococcus suis , Streptococcus suis/immunology , Streptococcus suis/pathogenicity , Streptococcus suis/genetics , Animals , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Mice , Mice, Knockout , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/microbiology , Inflammasomes/immunology , Inflammasomes/genetics , Cytokines/metabolism , Cytokines/genetics , Inflammation/immunology , Female , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Receptors, Cell Surface
4.
Vet Microbiol ; 295: 110161, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945021

ABSTRACT

Streptococcus suis (S. suis) type 2 (SS2) is an important zoonotic pathogen causing severe neural infections in pigs and causes serious threat to public health. Inflammasome activation plays an important role in the host against microbial infection but the role of inflammasome activation in the blood-brain barrier (BBB) integrity during S. suis infection is rarely studied. This study investigated the mechanism by which S. suis-induced NLRP3 inflammasome activation led to BBB disruption. Our results showed that S. suis infection activated NLRP3 inflammasome in brain microvascular endothelial cells (BMECs) leading to the secretion of pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and chemokines (CCL-2 and CXCL-2) as well as the cleavage of Gasdermin D (GSDMD) which were significantly attenuated by inflammasome inhibitor MCC950. Furthermore, S. suis infection significantly downregulated expression of tight junctions (TJs) proteins and trans-endothelial electrical resistance (TEER) while NLRP3 inhibition rescued S. suis-induced degradation of TJs proteins and significantly reduced the number of S. suis crossing BBB in transwell infection model. Moreover, recombinant IL-1ß exacerbated the reduction of TJs proteins in BMECs. In murine S. suis-infection model, MCC950 reduced the bacterial load and the excessive inflammatory response in mice brain. In addition, the integrity of the BBB was protected with increased TJ proteins expression and decreased pathological injury after the inhibition of NLRP3 inflammasome, indicating NLRP3 inflammasome plays a destructive role in meningitis induced by S. suis. Our study expands the understanding on the role of NLRP3 inflammasome in bacterial meningitis, which provide the valuable information for the development of anti-infective agents targeting NLRP3 to treat bacterial meningitis.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Streptococcal Infections , Streptococcus suis , Animals , Blood-Brain Barrier/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Mice , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Endothelial Cells/microbiology , Cytokines/metabolism , Cytokines/genetics , Mice, Inbred C57BL , Brain/microbiology , Brain/immunology , Female
5.
Synth Syst Biotechnol ; 9(3): 549-557, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38699566

ABSTRACT

Spermidine is a naturally occurring polyamine widely utilized in the prevention and treatment of various diseases. Current spermidine biosynthetic methods have problems such as low efficiency and complex multi-enzyme catalysis. Based on sequence-structure-function relationships, we engineered the widely studied homospermidine synthase from Blastochloris viridis (BvHSS) and obtained mutants that could catalyze the production of spermidine from 1,3-diaminopropane and putrescine. The specific activities of BvHSS and the mutants D361E and E232D + D361E (E232D-D) were 8.72, 46.04 and 48.30 U/mg, respectively. The optimal pH for both mutants was 9.0, and the optimal temperature was 50 °C. Molecular docking and dynamics simulations revealed that mutating aspartic acid at position 361 to glutamic acid narrowed the substrate binding pocket, promoting stable spermidine production. Conversely, mutating glutamic acid at position 232 to aspartic acid enlarged the substrate channel entrance, facilitating substrate entry into the active pocket and enhancing spermidine generation. In whole-cell catalysis lasting 6 h, D361E and E232D-D synthesized 725.3 and 933.5 mg/L of spermidine, respectively. This study offers a practical approach for single-enzyme catalyzed spermidine synthesis and sheds light on the crucial residues influencing homospermidine synthase catalytic activity in spermidine production.

6.
Anim Genet ; 55(4): 599-611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38746973

ABSTRACT

Genetic improvement of complex traits in animal and plant breeding depends on the efficient and accurate estimation of breeding values. Deep learning methods have been shown to be not superior over traditional genomic selection (GS) methods, partially due to the degradation problem (i.e. with the increase of the model depth, the performance of the deeper model deteriorates). Since the deep learning method residual network (ResNet) is designed to solve gradient degradation, we examined its performance and factors related to its prediction accuracy in GS. Here we compared the prediction accuracy of conventional genomic best linear unbiased prediction, Bayesian methods (BayesA, BayesB, BayesC, and Bayesian Lasso), and two deep learning methods, convolutional neural network and ResNet, on three datasets (wheat, simulated and real pig data). ResNet outperformed other methods in both Pearson's correlation coefficient (PCC) and mean squared error (MSE) on the wheat and simulated data. For the pig backfat depth trait, ResNet still had the lowest MSE, whereas Bayesian Lasso had the highest PCC. We further clustered the pig data into four groups and, on one separated group, ResNet had the highest prediction accuracy (both PCC and MSE). Transfer learning was adopted and capable of enhancing the performance of both convolutional neural network and ResNet. Taken together, our findings indicate that ResNet could improve GS prediction accuracy, affected potentially by factors such as the genetic architecture of complex traits, data volume, and heterogeneity.


Subject(s)
Bayes Theorem , Selection, Genetic , Triticum , Animals , Triticum/genetics , Swine/genetics , Genomics , Sus scrofa/genetics , Deep Learning , Models, Genetic , Neural Networks, Computer , Breeding
7.
BMC Genomics ; 25(1): 494, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764031

ABSTRACT

BACKGROUND: Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS: In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS: These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.


Subject(s)
ATP-Binding Cassette Transporters , Mammary Glands, Animal , Animals , Female , Mice , Apoptosis/genetics , Cell Proliferation , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Signal Transduction , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
8.
Vet Res ; 55(1): 35, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520031

ABSTRACT

The increase in the emergence of antimicrobial resistance has led to great challenges in controlling porcine extraintestinal pathogenic Escherichia coli (ExPEC) infections. Combinations of antimicrobial peptides (AMPs) and antibiotics can synergistically improve antimicrobial efficacy and reduce bacterial resistance. In this study, we investigated the antibacterial activity of porcine myeloid antimicrobial peptide 36 (PMAP-36) in combination with tetracycline against porcine ExPEC PCN033 both in vitro and in vivo. The minimum bactericidal concentrations (MBCs) of AMPs (PMAP-36 and PR-39) against the ExPEC strains PCN033 and RS218 were 10 µM and 5 µM, respectively. Results of the checkerboard assay and the time-kill assay showed that PMAP-36 and antibiotics (tetracycline and gentamicin) had synergistic bactericidal effects against PCN033. PMAP-36 and tetracycline in combination led to PCN033 cell wall shrinkage, as was shown by scanning electron microscopy. Furthermore, PMAP-36 delayed the emergence of PCN033 resistance to tetracycline by inhibiting the expression of the tetracycline resistance gene tetB. In a mouse model of systemic infection of PCN033, treatment with PMAP-36 combined with tetracycline significantly increased the survival rate, reduced the bacterial load and dampened the inflammatory response in mice. In addition, detection of immune cells in the peritoneal lavage fluid using flow cytometry revealed that the combination of PMAP-36 and tetracycline promoted the migration of monocytes/macrophages to the infection site. Our results suggest that AMPs in combination with antibiotics may provide more therapeutic options against multidrug-resistant porcine ExPEC.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Extraintestinal Pathogenic Escherichia coli/genetics , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Tetracyclines , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Swine Diseases/drug therapy
10.
Anal Chim Acta ; 1298: 342398, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462346

ABSTRACT

BACKGROUND: Sensitive and rapid antigen detection is critical for the diagnosis and treatment of infectious diseases, but conventional ELISAs including chemiluminescence-based assays are limited in sensitivity and require many operation steps. Fluorescence immunoassays are fast and convenient but often show limited sensitivity and dynamic range. RESULTS: To address the need, an aggregation-induced emission fluorgens (AIEgens) enhanced immunofluorescent assay with beads-based quantification on the digital microfluidic (DMF) platform was developed. Portable DMF devices and chips with small electrodes were fabricated, capable of manipulating droplets within 100 nL and boosting the reaction efficiency. AIEgen nanoparticles (NPs) with high fluorescence and photostability were synthesized to enhance the test sensitivity and detection range. The integration of AIEgen probes, transparent DMF chip design, and the large magnetic beads (10 µm) as capture agents enabled rapid and direct image-taking and signal calculation of the test result. The performance of this platform was demonstrated by point-of-care quantification of SARS-CoV-2 nucleocapsid (N) protein. Within 25 min, a limit of detection of 5.08 pg mL-1 and a limit of quantification of 8.91 pg mL-1 can be achieved using <1 µL sample. The system showed high reproducibility across the wide dynamic range (10-105 pg mL-1), with the coefficient of variance ranging from 2.6% to 9.8%. SIGNIFICANCE: This rapid, sensitive AIEgens-enhanced immunofluorescent assay on the DMF platform showed simplified reaction steps and improved performance, providing insight into the small-volume point-of-care testing of different biomarkers in research and clinical applications.


Subject(s)
COVID-19 , Nanoparticles , Humans , Microfluidics , SARS-CoV-2 , Reproducibility of Results , COVID-19/diagnosis
12.
Poult Sci ; 103(1): 103232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980749

ABSTRACT

We compared the genomes of multiple domestic chicken breeds with red and white earlobes to identify the differentiated regions between groups of breeds differing in earlobe color. This was done using a selective sweep mapping approach based on whole-genome sequence data. The most significant selective sweep was identified on chromosome 11, where the white earlobe chicken breeds originated from Mediterranean share a common haplotype, and where multiple candidate genes are located. The most plausible functional candidate gene is the Melanocortin 1 Receptor (MC1R), a receptor known to regulate pigmentation in the skin and hair, and it is also the gene with the strongest positional support from the haplotype-based analyses. It, however, still needs to be explored experimentally to identify effects also on chicken earlobe color variation. Our study is the first exploration of the genetic basis of white earlobe color in Mediterranean chickens using a selective sweep mapping method based on whole-genome sequencing data and shows its value for identifying likely functional genes mediating the pigmentation in earlobe. It also indicates a potential novel role of MC1R in birds and exemplifies how selection on fancy traits has influenced the genome during formation of the modern chicken breeds.


Subject(s)
Chickens , Genome , Animals , Chickens/genetics , Pigmentation/genetics , Haplotypes , Phenotype , Polymorphism, Single Nucleotide
13.
Mol Biol Evol ; 40(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069902

ABSTRACT

Rumpless chickens exhibit an abnormality in their tail development. The genetics and biology of this trait has been studied for decades to illustrate a broad variation in both the types of inheritance and the severity in the developmental defects of the tail. In this study, we created a backcross pedigree by intercrossing Piao (rumpless) with Xianju (normal) to investigate the genetic mechanisms and molecular basis of the rumpless trait in Piao chicken. Through genome-wide association and linkage analyses, the candidate region was fine-mapped to 798.5 kb (chromosome 2: 86.9 to 87.7 Mb). Whole-genome sequencing analyses identified a single variant, a 4.2 kb deletion, which was completely associated with the rumpless phenotype. Explorations of the expression data identified a novel causative gene, Rum, that produced a long, intronless transcript across the deletion. The expression of Rum is embryo-specific, and it regulates the expression of MSGN1, a key factor in regulating T-box transcription factors required for mesoderm formation and differentiation. These results provide genetic and molecular experimental evidence for a novel mechanism regulating tail development in chicken and report the likely causal mutation for the tail abnormity in the Piao chicken. The novel regulatory gene, Rum, will, due to its role in fundamental embryo development, be of interest for further explorations of a potential role in tail and skeletal development also in other vertebrates.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Loss of Function Mutation , Mutation , Phenotype , Polymorphism, Single Nucleotide
14.
Genet Sel Evol ; 55(1): 72, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853325

ABSTRACT

BACKGROUND: Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identification of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymorphisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data. RESULTS: We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits and six simulated traits with varying genetic architectures using two representative models (genomic best linear unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combinations of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait were optimized in the training population by five fold cross-validation and then tested in the validation population. Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architecture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improvements in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN. CONCLUSIONS: The SLDP marker selection method can be incorporated into mainstream prediction models to yield accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advantage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based genomic selection.


Subject(s)
Genome-Wide Association Study , Genomics , Animals , Swine/genetics , Male , Linkage Disequilibrium , Genotype , Genome-Wide Association Study/methods , Reproducibility of Results , Genomics/methods , Phenotype , Quantitative Trait Loci , Polymorphism, Single Nucleotide
15.
Int J Biol Macromol ; 253(Pt 7): 127377, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37839598

ABSTRACT

TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.


Subject(s)
Hyoscyamine , Amino Acid Sequence , Tropanes/chemistry , Tropanes/metabolism , Scopolamine
16.
Int J Biol Macromol ; 253(Pt 7): 127414, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838135

ABSTRACT

Short-chain dehydrogenase/reductase (SDR) acts as a biocatalyst in the synthesis of chiral alcohols with high optical purity. Herein, we achieved immobilization via crosslinking on novel magnetic metal-organic framework nanoparticles with a three-layer shell structure (Fe3O4@PDA@Cu (PABA)). The results of scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy confirmed the morphology and cross-linking property of immobilized SDR, which was more durable, stable, and reusable and exhibited better kinetic performance than free enzyme. The SDR and glucose dehydrogenase (GDH) were co-immobilized and then used for the asymmetric reduction of COBE and ethyl 2-oxo-4-phenylbutanoate (OPBE). These finding suggest that enzymes immobilized on novel MOF nanoparticles can serve as promising biocatalysts for asymmetric reduction prochiral ketones into chiral alcohols.


Subject(s)
Ketones , Metal-Organic Frameworks , Ketones/chemistry , Alcohols/chemistry , Enzymes, Immobilized/chemistry , Magnetic Phenomena , Oxidoreductases
17.
Cell Biosci ; 13(1): 169, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705071

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic hepatic disease and results in non-alcoholic steatohepatitis (NASH), which progresses to fibrosis and cirrhosis. Although the Leptin deficient rodent models are widely used in study of metabolic syndrome and obesity, they fail to develop liver injuries as in patients. METHODS: Due to the high similarity with humans, we generated Leptin-deficient (Leptin-/-) pigs to investigate the mechanisms and clinical trials of obesity and NAFLD caused by Leptin. RESULTS: The Leptin-/- pigs showed increased body fat and significant insulin resistance at the age of 12 months. Moreover, Leptin-/- pig developed fatty liver, non-alcoholic steatohepatitis and hepatic fibrosis with age. Absence of Leptin in pig reduced the phosphorylation of JAK2-STAT3 and AMPK. The inactivation of JAK2-STAT3 and AMPK enhanced fatty acid ß-oxidation and leaded to mitochondrial autophagy respectively, and both contributed to increased oxidative stress in liver cells. In contrast with Leptin-/- pig, although Leptin deletion in rat liver inhibited JAK2-STAT3 phosphorylation, the activation of AMPK pathway might prevent liver injury. Therefore, ß-oxidation, mitochondrial autophagy and hepatic fibrosis did not occurred in Leptin-/- rat livers. CONCLUSIONS: The Leptin-deficient pigs presents an ideal model to illustrate the full spectrum of human NAFLD. The activity of AMPK signaling pathway suggests a potential target to develop new strategy for the diagnosis and treatment of NAFLD.

18.
J Agric Food Chem ; 71(35): 13024-13034, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37622688

ABSTRACT

Spermidine is a naturally occurring polyamine with multiple biological activities and potential food and agricultural applications. However, sustainable and scalable spermidine production has not yet been attained. In this study, a homospermidine synthase (HSS) from Pseudomonas frederiksbergensis (PfHSS) capable of catalyzing the synthesis of spermidine from 1,3-diaminopropane and putrescine was identified based on multiple sequence alignment using Blastochloris viridis HSS (BvHSS) as a template. The optimal reaction pH and temperature for purified PfHSS were determined to be 8.5 and 45 °C, respectively, and K+ was able to promote the enzyme activity. Further analysis of the structural and functional relationships through molecular docking and molecular dynamics simulation indicates that glutamic acid at position 359 is the essential residue for the enzyme-catalyzed synthesis of spermidine. The whole-cell catalytic reaction yielded 1321.4 mg/L spermidine and 678.2 mg/L of homospermidine. This study presents a novel, promising, and sustainable biological method for producing spermidine.


Subject(s)
Polyamines , Spermidine , Molecular Docking Simulation , Putrescine
19.
J Anim Sci Biotechnol ; 14(1): 69, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37138301

ABSTRACT

BACKGROUND: Chickens provide globally important livestock products. Understanding the genetic and molecular mechanisms underpinning chicken economic traits is crucial for improving their selective breeding. Influenced by a combination of genetic and environmental factors, metabolites are the ultimate expression of physiological processes and can provide key insights into livestock economic traits. However, the serum metabolite profile and genetic architecture of the metabolome in chickens have not been well studied. RESULTS: Here, comprehensive metabolome detection was performed using non-targeted LC-MS/MS on serum from a chicken advanced intercross line (AIL). In total, 7,191 metabolites were used to construct a chicken serum metabolomics dataset and to comprehensively characterize the serum metabolism of the chicken AIL population. Regulatory loci affecting metabolites were identified in a metabolome genome-wide association study (mGWAS). There were 10,061 significant SNPs associated with 253 metabolites that were widely distributed across the entire chicken genome. Many functional genes affect metabolite synthesis, metabolism, and regulation. We highlight the key roles of TDH and AASS in amino acids, and ABCB1 and CD36 in lipids. CONCLUSIONS: We constructed a chicken serum metabolite dataset containing 7,191 metabolites to provide a reference for future chicken metabolome characterization work. Meanwhile, we used mGWAS to analyze the genetic basis of chicken metabolic traits and metabolites and to improve chicken breeding.

20.
Anal Chim Acta ; 1263: 341319, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37225343

ABSTRACT

Exosomes are nanoparticles with a bilayer lipid structure that carry cargo from their cells of origin. These vesicles are vital to disease diagnosis and therapeutics; however, conventional isolation and detection techniques are generally complicated, time-consuming, and costly, thus hampering the clinical applications of exosomes. Meanwhile, sandwich-structured immunoassays for exosome isolation and detection rely on the specific binding of membrane surface biomarkers, which may be limited by the type and amount of target protein present. Recently, lipid anchors inserted into the membranes of vesicles through hydrophobic interactions have been adopted as a new strategy for extracellular vesicle manipulation. By combining nonspecific and specific binding, the performance of biosensors can be improved variously. This review presents the reaction mechanisms and properties of lipid anchors/probes, as well as advances in the development of biosensors. The combination of signal amplification methods with lipid anchors is discussed in detail to provide insights into the design of convenient and sensitive detection techniques. Finally, the advantages, challenges, and future directions of lipid anchor-based exosome isolation and detection methods are highlighted from the perspectives of research, clinical use, and commercialization.


Subject(s)
Exosomes , Extracellular Vesicles , Nanoparticles , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL