Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Med Chem ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303015

ABSTRACT

The global pharmaceutical market has been profoundly impacted by the coronavirus pandemic, leading to an increased demand for specific drugs. Consequently, drug resistance has prompted continuous innovation in drug design strategies to effectively combat resistant pathogens or disease variants. Protein dimers play crucial roles in vivo, including catalytic reactions, signal transduction, and structural stability. The site of action for protein dimerization modulators typically does not reside within the active site of the protein, thereby potentially impeding resistance development. Therefore, harnessing viral protein dimerization modulators could represent a promising avenue for combating viral infections. In this Perspective, we provide a detailed introduction to the design principles and applications of dimerization modulators in antiviral research. Furthermore, we analyze various representative examples to elucidate their modes of action while presenting our perspective on dimerization modulators along with the opportunities and challenges associated with this groundbreaking area of investigation.

2.
J Med Chem ; 67(17): 15291-15310, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39226127

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and STAT3 has emerged as an effective drug target for TNBC treatment. Herein, we employed a scaffold-hopping strategy of natural products to develop a series of naphthoquinone-furopiperidine derivatives as novel STAT3 inhibitors. The in vitro assay showed that compound 10g possessed higher antiproliferative activity than Cryptotanshinone and Napabucasin against TNBC cell lines, along with lower toxicity and potent antitumor activity in a TNBC xenograft model. Mechanistically, 10g could inhibit the phosphorylation of STAT3 and the binding affinity was determined by the SPR assay (KD = 8.30 µM). Molecule docking studies suggested a plausible binding mode between 10g and the SH2 domain, in which the piperidine fragment and the terminal hydroxy group of 10g played an important role in demonstrating the success of this evolution strategy. These findings provide a natural product-inspired novel STAT3 inhibitor for TNBC treatment.


Subject(s)
Antineoplastic Agents , Biological Products , Cell Proliferation , Molecular Docking Simulation , Naphthoquinones , Piperidines , STAT3 Transcription Factor , Triple Negative Breast Neoplasms , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Naphthoquinones/therapeutic use , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Piperidines/therapeutic use , Animals , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Structure-Activity Relationship , Mice, Nude , Xenograft Model Antitumor Assays , Drug Discovery , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
4.
Phys Chem Chem Phys ; 26(34): 22598-22610, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39158190

ABSTRACT

Determination of protein-ligand interactions is crucial for structure-based drug design. But, accurate prediction of the binding structures of protein-ligand is still a major challenge for molecular docking methods. Herein, we developed molecular docking with conformer-dependent charges (MDCC), a docking method to combine conformational search with RESP charges. Compared to the conventional Glide SP method (51.9%) and Glide XP method (52.6%), the MDCC method (60%) exhibited a higher docking success rate based on 285 protein-small molecule ligand complexes from the PDBbind core set. And when the ligand met one of the conditions (the total hydrophobic surface area > 438, the number of hydrophobic atoms > 10, and molecular weight > 235), the docking success rate of the MDCC method (>90%) was higher than that of the Glide SP method (∼72%). Furthermore, we also applied the MDCC method to predict the protein-ligand interactions in GPCR Dock 2021 competition, with our prediction models ranking 2nd out of all 202 participating models for APJ and 5th out of all 193 participating models for GPR139, demonstrating the relatively high docking accuracy of the MDCC method. In addition, we also found that the MDCC method combined with molecular dynamics simulations could facilitate the application of AlphaFold 2 in drug discovery. The above results all set the stage for the application of the MDCC method in future practical drug design.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Ligands , Proteins/chemistry , Proteins/metabolism , Protein Binding , Hydrophobic and Hydrophilic Interactions , Drug Design
5.
Food Chem ; 456: 139294, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38914034

ABSTRACT

The study aimed to develop a rapid and sensitive colorimetric platform based on the Emerson reaction to visualize and determine total aflatoxins (AFs) in peanut oil. This method offers the advantage of fast screening for AFs (AFB1, AFB2, AFG1, and AFG2), eliminating the need for specific antibodies. The proposed approach combined colorimetric detection with magnetic dummy imprinted solid-phase extraction and purification, enhancing sensitivity and selectivity. The oxidizer aided the colorless AFs in reacting with 4-aminoantipyrine, producing green condensates. Thus, a dual-mode approach was developed for AFs detection, employing both UV-vis colorimetric and smartphone-based colorimetry. Both methods showed a good linear relationship with the concentration of AFs. Notably, the smartphone-based method demonstrated a detection range of 0.5-57 µg/kg, with a detection limit as low as 0.21 µg/kg. The suggested colorimetric methods present a promising potential for onsite detection and fast screening of AFs in actual samples.


Subject(s)
Aflatoxins , Colorimetry , Food Contamination , Peanut Oil , Smartphone , Solid Phase Extraction , Colorimetry/methods , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Aflatoxins/analysis , Aflatoxins/isolation & purification , Peanut Oil/chemistry , Food Contamination/analysis , Limit of Detection , Molecular Imprinting
6.
Front Psychol ; 15: 1352692, 2024.
Article in English | MEDLINE | ID: mdl-38845764

ABSTRACT

Purpose: The purpose of this study is to examine whether phonetic information functions and how phonetic information affects voice identity processing in blind people. Method: To address the first inquiry, 25 normal sighted participants and 30 blind participants discriminated voice identity, when listening forward speech and backward speech from their own native language and another unfamiliar language. To address the second inquiry, combining articulatory suppression paradigm, 26 normal sighted participants and 26 blind participants discriminated voice identity, when listening forward speech from their own native language and another unfamiliar language. Results: In Experiment 1, not only in the voice identity discrimination task with forward speech, but also in the discrimination task with backward speech, both the sighted and blind groups showed the superiority of the native language. This finding supports the view that backward speech still retains some phonetic information, and indicates that phonetic information can affect voice identity processing in sighted and blind people. In addition, only the superiority of the native language of sighted people was regulated by the speech manner, which is related to articulatory rehearsal. In Experiment 2, only the superiority of the native language of sighted people was regulated by articulatory suppression. This indicates that phonetic information may act in different ways on voice identity processing in sighted and blind people. Conclusion: The heightened dependence on voice source information in blind people appears not to undermine the function of phonetic information, but it appears to change the functional mechanism of phonetic information. These findings suggest that the present phonetic familiarity model needs to be improved with respect to the mechanism of phonetic information.

8.
J Med Chem ; 67(11): 9628-9644, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38754045

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system and the unmet need for MS treatment demands new therapeutic development. Particularly, PI3Kδ is a high-value target for autoimmune disease, while the investigation of PI3Kδ inhibitors for MS therapy is relatively scarce. Herein, we report a novel class of azaindoles as PI3Kδ inhibitors for MS treatment. Compound 31, designed via nitrogen bioisosterism, displayed excellent PI3Kδ inhibitory activity and selectivity. In vitro assay showed that 31 exhibited superior activity on T lymphocytes to inhibit the proliferation of CD4+, CD8+, and CD3+ T cells. In the experimental autoimmune encephalomyelitis (EAE) model, 31 showed a comparable therapeutical efficacy with Dexamethasone to significantly ameliorate EAE symptoms. Mechanistic studies showed that compound 31 could significantly inhibit the PI3K/AKT/mTOR signaling pathway and inhibited T-cell proliferation and differentiation. Overall, this work provides a new structural PI3Kδ inhibitor and a new vision for MS therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Encephalomyelitis, Autoimmune, Experimental , Indoles , Multiple Sclerosis , Phosphoinositide-3 Kinase Inhibitors , Animals , Multiple Sclerosis/drug therapy , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Indoles/therapeutic use , Mice , Cell Proliferation/drug effects , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Structure-Activity Relationship , T-Lymphocytes/drug effects , Drug Discovery , Mice, Inbred C57BL , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use
9.
Behav Brain Res ; 466: 114990, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38582411

ABSTRACT

Previous studies have shown that alertness is closely related to executive control function, but its impact on components of post-error adjustment is unknown. This study applied the Attentional Networks Test and the Four-choice Flanker task with three response stimulus intervals (RSIs) to explore the correlation between alertness and post-error adjustment. The linear mixed-effects model of alertness and RSI on the post-error processing indicators showed a significant negative correlation between the alertness and post-error slowing (PES) under 200 ms RSI , as well as between alertness and post-error improvement in accuracy (PIA) under both 700 ms RSI and 1200 ms RSI. Participants with lower alertness showed larger post-error slowing in the early stages, while those with higher alertness had smaller PIA in later stages. This study revealed the effects of alertness on different processing components of post-error adjustment. The control strategies utilized by individuals with high and low levels of alertness differed in preparation for performance monitoring. Alertness improved post-error response speed in a task-unspecific manner, but not post-error adaptation.


Subject(s)
Attention , Executive Function , Psychomotor Performance , Reaction Time , Humans , Male , Female , Attention/physiology , Young Adult , Reaction Time/physiology , Executive Function/physiology , Adult , Psychomotor Performance/physiology , Adaptation, Psychological/physiology
10.
Drug Des Devel Ther ; 18: 1369-1384, 2024.
Article in English | MEDLINE | ID: mdl-38681210

ABSTRACT

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders without available pharmacological therapies. Dynasore is a cell-permeable molecule that inhibits GTPase activity and exerts protective effects in several disease models. However, whether dynasore can alleviate lipopolysaccharide (LPS)-induced ALI is unknown. This study investigated the effect of dynasore on macrophage activation and explored its potential mechanisms in LPS-induced ALI in vitro and in vivo. Methods: Bone marrow-derived macrophages (BMDMs) were activated classically with LPS or subjected to NLRP3 inflammasome activation with LPS+ATP. A mouse ALI model was established by the intratracheal instillation (i.t.) of LPS. The expression of PYD domains-containing protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) protein was detected by Western blots. Inflammatory mediators were analyzed in the cell supernatant, in serum and bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assays. Morphological changes in lung tissues were evaluated by hematoxylin and eosin staining. F4/80, Caspase-1 and GSDMD distribution in lung tissue was detected by immunofluorescence. Results: Dynasore downregulated nuclear factor (NF)-κB signaling and reduced proinflammatory cytokine production in vitro and inhibited the production and release of interleukin (IL)-1ß, NLRP3 inflammasome activation, and macrophage pyroptosis through the Drp1/ROS/NLRP3 axis. Dynasore significantly reduced lung injury scores and proinflammatory cytokine levels in both BALF and serum in vivo, including IL-1ß and IL-6. Dynasore also downregulated the co-expression of F4/80, caspase-1 and GSDMD in lung tissue. Conclusion: Collectively, these findings demonstrated that dynasore could alleviate LPS-induced ALI by regulating macrophage pyroptosis, which might provide a new therapeutic strategy for ALI/ARDS.


Subject(s)
Acute Lung Injury , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Inflammasomes/antagonists & inhibitors , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pyroptosis/drug effects
11.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38577724

ABSTRACT

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases , Leukemia, Myeloid, Acute , Phosphoinositide-3 Kinase Inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Animals , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays , Drug Discovery , Mice, Nude , Molecular Docking Simulation , Male
12.
Drug Discov Today ; 29(6): 103987, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670256

ABSTRACT

Tuberculosis (TB) is a global lethal disease caused by Mycobacterium tuberculosis (Mtb). The flavoenzyme decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1) plays a crucial part in the biosynthesis of lipoarabinomannan and arabinogalactan for the cell wall of Mtb and represents a promising target for anti-TB drug development. Therefore, there is an urgent need to discover DprE1 inhibitors with novel scaffolds, improved bioactivity and high drug-likeness. Recent studies have shown that artificial intelligence/computer-aided drug design (AI/CADD) techniques are powerful tools in the discovery of novel DprE1 inhibitors. This review provides an overview of the discovery of DprE1 inhibitors and their underlying mechanism of action and highlights recent advances in the discovery and optimization of DprE1 inhibitors using AI/CADD approaches.


Subject(s)
Antitubercular Agents , Artificial Intelligence , Humans , Antitubercular Agents/pharmacology , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Mycobacterium tuberculosis/drug effects , Drug Design , Computer-Aided Design , Drug Development/methods , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Tuberculosis/drug therapy , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Drug Discovery/methods
13.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38372291

ABSTRACT

The ecological validity of bilingual code-switching has garnered increasing attention in recent years. Contrary to traditional studies that have focused on forced language switching, emerging theories posit that voluntary switching may not incur such a cost. To test these claims and understand differences between forced and voluntary switching, the present study conducted a systematic comparison through both behavioral and neural perspectives. Utilizing fMRI alongside picture-naming tasks, our findings diverge from prior work. Voluntary language switching not only demonstrated switching costs at the behavioral level but also significantly activated brain regions associated with inhibitory control. Direct comparisons of voluntary and forced language switching revealed no significant behavioral differences in switching costs, and both shared several common brain regions that were activated. On the other hand, a nuanced difference between the two types of language switching was revealed by whole-brain analysis: voluntary switching engaged fewer language control regions than forced switching. These findings offer a comprehensive view of the neural and behavioral dynamics involved in bilingual language switching, challenging prior claims that voluntary switching imposes no behavioral or neural costs, and thus providing behavioral and neuroimaging evidence for the involvement of inhibitory control in voluntary language switching.


Subject(s)
Magnetic Resonance Imaging , Multilingualism , Humans , Language , Cognition , China
14.
Drug Resist Updat ; 73: 101053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301487

ABSTRACT

Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.


Subject(s)
Antiviral Agents , Drug Design , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism , Drug Resistance, Viral/genetics , Mutation
15.
J Med Chem ; 67(3): 1914-1931, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38232131

ABSTRACT

Decaprenylphosphoryl-ß-d-ribose oxidase (DprE1) is a promising target for treating tuberculosis (TB). Currently, most novel DprE1 inhibitors are discovered through high-throughput screening, while computer-aided drug design (CADD) strategies are expected to promote the discovery process. In this study, with the aid of structure-based virtual screening and computationally guided design, a series of novel scaffold N-(1-(6-oxo-1,6-dihydropyrimidine)-pyrazole) acetamide derivatives with significant antimycobacterial activities were identified. Among them, compounds LK-60 and LK-75 are capable of effectively suppressing the proliferation of Mtb with MICMtb values of 0.78-1.56 µM, comparable with isoniazid and much superior to the phase II candidate TBA-7371 (MICMtb = 12.5 µM). LK-60 is also the most active DprE1 inhibitor derived from CADD so far. Further studies confirmed their high affinity to DprE1, good safety profiles to gut microbiota and human cells, and synergy effects with either rifampicin or ethambutol, indicating their broad potential for clinical applications.


Subject(s)
Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Alcohol Oxidoreductases , Pyrazoles/pharmacology , Acetamides/pharmacology , Bacterial Proteins
16.
EJNMMI Phys ; 11(1): 5, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38190088

ABSTRACT

BACKGROUND: Due to spatial resolution limitations, conventional NaI-SPECT typically overestimates the left ventricular (LV) ejection fraction (EF) in patients with small LV volumes. The purpose of this study was to explore the clinical application value of the small heart (SH) reconstruction protocol embedded in the postprocessing procedure of D-SPECT. METHODS: We retrospectively analyzed patients who undergo both D-SPECT and echocardiography (Echo) within one week. Patients with small LV volume were defined as those with a rest end-systolic volume (rESV) ≤ 25 mL and underwent reconstruction using the standard (SD) reconstruction protocol. The SH protocol was deemed successful in correcting the LVEF value if it decreased by 5% or more compared to the SD protocol. The ROC curve was used to calculate the optimal cutoff value of the SH protocol. LVEF, ESV and EDV were computed with SD and SH, respectively. Echo was performed as a reference, and Echo-LVEF, ESV, and EDV were calculated using the Teichholz formula. One-way ANOVA was used to compare these parameters among the three groups. RESULTS: The final study included 209 patients (73.21% female, age 67.34 ± 7.85 years). Compared with the SD protocol, the SH protocol significantly decreased LVEF (67.43 ± 7.38% vs. 71.30 ± 7.61%, p < 0.001). The optimal cutoff value for using the SH protocol was rESV > 17 mL (AUC = 0.651, sensitivity = 78.43%, specificity = 45.57%, p = 0.001). In the subgroup of rESV > 17 mL, there was no significant difference in LVEF (61.84 ± 4.67% vs. 62.83 ± 2.85%, p = 0.481) between the SH protocol and Echo, and no significant difference was observed in rESV (26.92 ± 3.25 mL vs. 27.94 ± 7.96 mL, p = 0.60) between the SH protocol and Echo. CONCLUSION: This pilot study demonstrated that the SH reconstruction protocol was able to effectively correct the overestimation of LVEF in patients with small LV volumes. Particularly, in the rESV > 17 mL subgroup, the time and computing power waste could be reduced while still ensuring the accuracy of the LVEF value and image quality.

17.
Drug Discov Today ; 29(3): 103888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244674

ABSTRACT

With the advancement of globalization, our world is becoming increasingly interconnected. However, this interconnection means that once an infectious disease emerges, it can rapidly spread worldwide. Specifically, viral diseases pose a growing threat to human health. The COVID-19 pandemic has underscored the pressing need for expedited drug development to combat emerging viral diseases. Traditional drug discovery methods primarily rely on random screening and structure-based optimization, and new approaches are required to address more complex scenarios in drug discovery. Emerging antiviral strategies include phase separation and lysosome/exosome targeting. The widespread implementation of these innovative drug design strategies will contribute towards tackling existing viral infections and future outbreaks.


Subject(s)
Exosomes , Virus Diseases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Pandemics , Phase Separation , Virus Diseases/drug therapy
18.
Adv Sci (Weinh) ; 11(7): e2305432, 2024 02.
Article in English | MEDLINE | ID: mdl-38126681

ABSTRACT

Acute lung injury (ALI) is one of the most common complications in COVID-19 and also a syndrome of acute respiratory failure with high mortality rates, but lacks effective therapeutic drugs. Natural products provide inspiration and have proven to be the most valuable source for bioactive molecule discovery. In this study, the chemical evolution of the natural product Tanshinone IIA (Tan-IIA) to achieve a piperidine-fused scaffold through a synthetic route of pre-activation, multi-component reaction, and post-modification is presented. Through biological evaluation, it is pinpointed that compound 8b is a standout candidate with remarkable anti-inflammation and anti-oxidative stress properties, coupled with low toxicity. The mechanistic study unveils a multifaceted biological profile of 8b and shows that 8b is highly efficient in vivo for the treatment of ALI. Therefore, this work not only provides an effective strategy for the treatment of ALI, but also offers a distinctive natural product-inspired drug discovery.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Evolution, Chemical , Acute Lung Injury/drug therapy , Oxidative Stress
19.
Behav Brain Sci ; 46: e259, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37779292

ABSTRACT

Morin suggested that one of the reasons for the difficulty in standardizing graphic codes is that the production of spoken language reduces the need for graphic codes. Here we try to extend their claims from a psychological perspective, which allows us to conclude that the puzzle of ideography is perhaps related to human psychological traits and psychological evolution.


Subject(s)
Language , Humans
20.
J Med Chem ; 66(17): 11905-11926, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37606563

ABSTRACT

PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.


Subject(s)
Acute Lung Injury , Animals , Mice , Molecular Docking Simulation , Acute Lung Injury/drug therapy , Amines , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL