Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687331

ABSTRACT

Due to the diversity of Echinochloa species and the limited understanding of their damage processes in rice fields, clarifying the biological properties of distinct species could help create a foundation for effective control techniques. Pot experiments and field competition trials were conducted using eight Echinochloa species to elucidate their biological differences and assess their varying levels of negative impact on rice. The survey outcomes showed that E. oryzoides had the highest 1000-grain weight (3.12 g) while E. colona had the lowest (0.90 g). The largest grain number per spikelet found in E. glabrescens (940) was 3.4 times greater than that in E. oryzoides (277). Different species responded variably to changes in temperature and photoperiod. Except for E. caudate, all Echinochloa species exhibited a shortened growth period with the delay of the sowing date. Under field competitive conditions, all Echinochloa species exhibited significantly greater net photosynthetic rates than rice, with E. crusgalli exhibiting the highest photosynthetic capacity. Moreover, in this resource-limited setting, barnyardgrass species had a decrease in tiller formation and panicle initiation but a significant increase in plant height. These findings contribute valuable insights into the biological characteristics of barnyardgrass populations and provide guidance for implementing effective control measures in rice fields.

2.
ACS Appl Mater Interfaces ; 13(48): 57252-57263, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34844407

ABSTRACT

Rechargeable Mg batteries have great potential in next-generation scalable energy-storage applications, but the electrochemical performance is limited by the Mg-intercalation cathodes. Hybrid batteries based on dual-cation (Mg2+ and alkali metal cations) electrolytes would not only improve the electrochemical performance but also induce the co-intercalation of Mg2+ with alkali metal cations. As previous reports overwhelmingly focus on Mg2+/Li+ hybrid batteries, in this work, Mg2+/Na+ and Mg2+/K+ hybrid batteries are constructed using a typical layered VS2 cathode and studied in comparison with Mg2+/Li+ batteries. It is observed that Mg2+ could co-intercalate into VS2 with Li+, Na+, or K+. However, Mg-intercalation is irreversible in the Mg2+/Li+ system, and co-intercalation of Mg2+ and K+ would cause a collapse of VS2. Comparatively, the co-intercalation of Mg2+ and Na+ into VS2 exhibits the highest reversibility, and the Mg2+/Na+ hybrid battery shows the best cycling stability without capacity fading within 1000 cycles. Our work highlights the co-intercalation reversibility of a non-pre-expanded layered disulfide cathode and delivers insights for the development of high-performance rechargeable Mg metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...