Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Neural Syst ; 34(8): 2450036, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38686911

ABSTRACT

Magnetic Resonance Imaging (MRI) is an important diagnostic technique for brain tumors due to its ability to generate images without tissue damage or skull artifacts. Therefore, MRI images are widely used to achieve the segmentation of brain tumors. This paper is the first attempt to discuss the use of optimization spiking neural P systems to improve the threshold segmentation of brain tumor images. To be specific, a threshold segmentation approach based on optimization numerical spiking neural P systems with adaptive multi-mutation operators (ONSNPSamos) is proposed to segment brain tumor images. More specifically, an ONSNPSamo with a multi-mutation strategy is introduced to balance exploration and exploitation abilities. At the same time, an approach combining the ONSNPSamo and connectivity algorithms is proposed to address the brain tumor segmentation problem. Our experimental results from CEC 2017 benchmarks (basic, shifted and rotated, hybrid, and composition function optimization problems) demonstrate that the ONSNPSamo is better than or close to 12 optimization algorithms. Furthermore, case studies from BraTS 2019 show that the approach combining the ONSNPSamo and connectivity algorithms can more effectively segment brain tumor images than most algorithms involved.


Subject(s)
Algorithms , Brain Neoplasms , Magnetic Resonance Imaging , Neural Networks, Computer , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/physiopathology , Humans , Image Processing, Computer-Assisted/methods , Mutation
2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687843

ABSTRACT

Since substations are key parts of power transmission, ensuring the safety of substations involves monitoring whether the substation equipment is in a normal state. Oil leakage detection is one of the necessary daily tasks of substation inspection robots, which can immediately find out whether there is oil leakage in the equipment in operation so as to ensure the service life of the equipment and maintain the safe and stable operation of the system. At present, there are still some challenges in oil leakage detection in substation equipment: there is a lack of a more accurate method of detecting oil leakage in small objects, and there is no combination of intelligent inspection robots to assist substation inspection workers in judging oil leakage accidents. To address these issues, this paper proposes a small object detection method for oil leakage defects in substations. This paper proposes a small object detection method for oil leakage defects in substations, which is based on the feature extraction network Resnet-101 of the Faster-RCNN model for improvement. In order to decrease the loss of information in the original image, especially for small objects, this method is developed by canceling the downsampling operation and replacing the large convolutional kernel with a small convolutional kernel. In addition, the method proposed in this paper is combined with an intelligent inspection robot, and an oil leakage decision-making scheme is designed, which can provide substation equipment oil leakage maintenance recommendations for substation workers to deal with oil leakage accidents. Finally, the experimental validation of real substation oil leakage image collection is carried out by the intelligent inspection robot equipped with a camera. The experimental results show that the proposed FRRNet101-c model in this paper has the best performance for oil leakage detection in substation equipment compared with several baseline models, improving the Mean Average Precision (mAP) by 6.3%, especially in detecting small objects, which has improved by 12%.

SELECTION OF CITATIONS
SEARCH DETAIL