Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Front Microbiol ; 15: 1389751, 2024.
Article in English | MEDLINE | ID: mdl-38863755

ABSTRACT

Tobacco (Nicotiana tabacum L.) is a major cash crop, and soil quality played a significant role in the yield and quality of tobacco. Most farmers cultivate tobacco in rotation with other crops to improve the soil characteristics. However, the effects of different previous crops on the soil's nutrient status and bacterial community for tobacco cultivation still need to be determined. Three treatments were assessed in this study, i.e., tobacco-planting soil without treatment (CK), soil with barley previously cultivated (T1), and soil with rapeseed previously cultivated (T2). The soil physical and chemical properties and the 16S rRNA gene sequence diversity of the bacterial community were analyzed. The effects of different crops on the physical and chemical properties of tobacco-planting soil and the diversity and richness of the bacterial community were comprehensively discussed. The results of this study showed that different previously cultivated crops altered the nutrient status of the soil, with changes in the ratio of NH4 +-N to NO3 --N having the most significant impact on tobacco. In CK, the ratio of NH4 +-N to NO3 --N was 1:24.2, T1-1:9.59, and T2-1:11.10. The composition of the bacterial community in tobacco-planting soil varied significantly depending on the previously cultivated crops. The richness and diversity of the bacterial community with different crops were considerably higher than without prior cultivation of different crops. The dominant bacteria in different treatments were Actinobacteriota, Proteobacteria, and Chloroflexi with their relative abundance differed. In conclusion, our study revealed significant differences in nutrient status, bacterial community diversity, and the richness of tobacco-planting soil after the preceding cultivation of different crops. Suitable crops should be selected to be previously cultivated in tobacco crop rotations in near future for sustainable agriculture.

2.
Int J Surg ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905498

ABSTRACT

BACKGROUND: Pulmonary rehabilitation is essential for airway management after thoracic surgery. Most current pulmonary rehabilitations are composed of 2-4-week exercises, which require significant consumption of medical resources and concerns about disease progression. MATERIALS AND METHODS: This single-center, prospective, randomized controlled trial enrolled smoking patients with pulmonary masses or nodules suitable for lobectomy, aged 18-80, with smoking history (≥20 pack-years). Eligible patients were randomized in a 1:1 ratio into two groups. Patients in the intervention group underwent perioperative breathing exercises based on positive pressure vibration expectoration and three-day preoperative lower limb endurance training. Patients in the control group received routine perioperative care. The primary outcome was in-hospital incidence of postoperative pulmonary complications. Secondary outcomes included postoperative hospital stay, total hospitalization cost, postoperative drainage time, drainage volume, semiquantitative cough strength score, pain score, Borg scale-assessed fatigue, and walking distance on postoperative days 1 and 2. RESULTS: A total of 194 patients were included in the study with 94 in the intervention group and 100 in the control group. Our ultrashort pulmonary rehabilitation program potentially reduced pulmonary complications incidence (24.5% vs. 33.0%), but without statistical significance (P=0.190). No significant differences were found in other perioperative outcomes, except for postoperative semiquantitative cough strength score (3 [interquartile range, 3-3.75] vs. 3 [interquartile range, 2-3], P<0.001) and change in walking distance from postoperative days 1 to 2 (60 [interquartile range, 40-82.5] vs. 30 [interquartile range, 10-60], P=0.003). CONCLUSION: There were no significant differences in postoperative complications and other hospitalizations, but our ultrashort rehabilitation program improved patients' semiquantitative cough strength score and walking distance, indicating potential for better outcomes. This treatment is a safe and effective means of airway management for thoracic surgery in the era of enhanced recovery. (ClinicalTrials.gov Identifier: XXX).

3.
Sci Rep ; 14(1): 14160, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898096

ABSTRACT

Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.


Subject(s)
Crops, Agricultural , Fungi , Nicotiana , Soil Microbiology , Soil , Nicotiana/microbiology , Nicotiana/growth & development , Fungi/growth & development , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Soil/chemistry , Agriculture/methods , Biodiversity
4.
Oncogene ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879588

ABSTRACT

Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.

5.
Plant Dis ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916905

ABSTRACT

Cigar tobacco (Nicotiana tabacum L.) is widely planted in Yunnan, which is becoming an important economic crop in China. In March 2023, root rot of cigar tobacco (cv. Yunxue 38) was observed in Baoshan (98°51'E, 24°58'N), and in July 2022 root rot of tobacco (cv. Yunyan 87) was observed in Dali (99°54'E, 26°30'N), Yunnan Province, China. The average disease incidences surveyed in the fields reached 10%. At the early stage, the bottom leaves showed wilting and turned yellow, and the roots became brown. Following the disease development, the color of roots turned to dark brown and ultimately necrosis. To isolate the causal agent, small pieces (5×5 mm) of diseased root from 6 symptomatic plant samples (three samples of cv. Yunxue 38 and three samples of cv. Yunyan 87) were cut. Pieces were surface-sterilized by dipping in 75% ethanol for 30 s, rinsed three times with sterile distilled water, then transferred to potato dextrose agar (PDA) medium and incubated at 28°C in the dark. Six fungal isolates cultured for 14 days were obtained. They were morphologically similar, so a representative isolate was selected for the following experiment. The colonies grew slowly on PDA, and their color were light pink initially, then changed to amaranth. Hyphae were hyaline and septate. Microconidia were hardly produced on PDA plates. After 14 days of culture on V8 juice agar, the colonies showed white aerial mycelia, and ellipsoidal and transparent conidia were observed, which measured 6.5 to 8.3 × 3.4 to 5.0 µm (n=20). Also, the pycnidia were measured 150 to 220 µm, that were subglobose in dark brown with brown setae. These morphological characteristics of 22DL91 were identical to S. terrestris (Boerema et al. 2004). For molecular identification, DNA was extracted and the PCR products of ITS region and polymerase II second largest subunit (RPB2), amplified with the primers ITS1/ITS4 and RPB2-5F/RPB2-7cR, were sequenced. By BLASTn analysis, the obtained ITS sequences showed 100% homology and the RPB2 sequences showed 95% homology with S. terrestris strains in GenBank (accession ON006851 and OM417590). The sequences were deposited in NCBI with accession numbers OR539491 (ITS) and OR554276 (RPB2), respectively. Based on the morphology and phylogenetic analysis, the isolate was 22DL91 identified as S. terrestris. Pathogenicity was evaluated on 50-day-old cigar tobacco seedlings (cv. Yunxue 38) and tobacco seedlings (cv. Yunyan 87). Ten plants were inoculated with 20 mL of conidial suspension of 105 conidia/mL poured onto the roots and ten control seedlings dipped in sterile water as controls (Luo et al. 2023). After 14 days, all inoculated seedlings showed the symptoms with leaves yellowing and root rot, whereas the control seedlings had no symptoms. Moreover, the fungus S. terrestris was reisolated from the infected roots, fulfilling Koch's postulates. This fungus was previously known to cause pink root on garlic in China (Zhang et al. 2019). To our knowledge, this is the first report of S. terrestris causing root rot of Nicotiana tabacum in China. Therefore, this finding will provide valuable information for prevention and management of root rot on tobacco.

6.
Front Immunol ; 15: 1374236, 2024.
Article in English | MEDLINE | ID: mdl-38605948

ABSTRACT

Despite undeniable advances in modern medicine, lung cancer still has high morbidity and mortality rates. Lung cancer is preventable and treatable, and it is important to identify new risk factors for lung cancer, especially those that can be treated or reversed. Obstructive sleep apnea (OSA) is a very common sleep-breathing disorder that is grossly underestimated in clinical practice. It can cause, exacerbate, and worsen adverse outcomes, including death and various diseases, but its relationship with lung cancer is unclear. A possible causal relationship between OSA and the onset and progression of lung cancer has been established biologically. The pathophysiological processes associated with OSA, such as sleep fragmentation, intermittent hypoxia, and increased sympathetic nervous excitation, may affect normal neuroendocrine regulation, impair immune function (especially innate and cellular immunity), and ultimately contribute to the occurrence of lung cancer, accelerate progression, and induce treatment resistance. OSA may be a contributor to but a preventable cause of the progression of lung cancer. However, whether this effect exists independently of other risk factors is unclear. Therefore, by reviewing the literature on the epidemiology, pathogenesis, and treatment of lung cancer and OSA, we hope to understand the relationships between the two and promote the interdisciplinary exchange of ideas between basic medicine, clinical medicine, respiratory medicine, sleep medicine, and oncology.


Subject(s)
Lung Neoplasms , Sleep Apnea, Obstructive , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Lung Neoplasms/therapy , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/therapy , Risk Factors , Sympathetic Nervous System , Hypoxia/complications
8.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494840

ABSTRACT

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Subject(s)
Digestive System Diseases , Parkinson Disease , Humans , Dopamine/metabolism , Receptors, Dopamine , Parkinson Disease/metabolism , Neurotransmitter Agents
11.
Sci Rep ; 14(1): 1767, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38243087

ABSTRACT

Soil nitrogen content, structure, and nitrogen cycling play a crucial role in tobacco growth quality, with different preceding crops having varying impacts on tobacco cultivation soil. This study conducted using field experiments, employed three treatments with different preceding crops, namely tobacco, barley, and rapeseed, to investigate the effects of different preceding crops on soil nitrogen structure and the expression levels of soil nitrogen cycling-related functional genes in tobacco cultivation soil. The results indicated that different preceding crops had varying effects on the content of different nitrogen forms in tobacco cultivation soil. Ammonium nitrogen and nitrate nitrogen were the two nitrogen forms which were most influenced by preceding crops, with the ammonium nitrogen content in soils following barley and rapeseed preceding crops increasing by 82.88% and 63.56%, respectively, compared to sole tobacco cultivation. The nitrate nitrogen content in tobacco cultivation soil was 26.97% higher following barley preceding crops and 24.39% higher following rapeseed preceding crops compared to sole tobacco cultivation. Simultaneously, different preceding crops also affected the expression levels of nitrogen cycling-related genes in tobacco cultivation soil. In the nitrification process, amoA was significantly impacted, with its expression reduced by 64.39% and 72.24% following barley and rapeseed preceding crops, respectively, compared to sole tobacco cultivation. In the denitrification process, except for the narG gene, all other genes were subjected to varying degrees of inhibition when preceded by barley and rapeseed crops. Correlation analysis between soil nitrogen structure and the expression levels of nitrogen cycling-related genes revealed that increased nitrogen levels suppressed the expression of Arch-amoA. Additionally, ammonium nitrogen strongly influenced the expression levels of most soil nitrogen cycling functional genes. In conclusion, preceding crops alter soil nitrogen structure, possibly due to changes in soil microorganisms, and different preceding crops modified the expression levels of nitrogen cycling-related genes in tobacco cultivation soil, consequently affecting the proportions of various nitrogen forms in the soil.


Subject(s)
Ammonium Compounds , Soil , Soil/chemistry , Nitrogen/metabolism , Nicotiana/genetics , Nitrates/analysis , Crops, Agricultural/metabolism , Soil Microbiology , Nitrogen Cycle
12.
Hepatology ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015993

ABSTRACT

BACKGROUND AND AIMS: Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS: By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS: Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.

13.
Plants (Basel) ; 12(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37653910

ABSTRACT

Nitrogen deposition and biodiversity alter plant flowering phenology through abiotic factors and functional traits. However, few studies have considered their combined effects on flowering phenology. A common garden experiment with two nitrogen addition levels (0 and 6 g N m-2 year-1) and five species richness levels (1, 2, 4, 6, and 8) was established. We assessed the effects of nitrogen addition and plant species richness on three flowering phenological events of Medicago sativa L. via changes in functional traits, soil nutrients, and soil moisture and temperature. The first flowering day was delayed, the last flowering day advanced, and the flowering duration shortened after nitrogen addition. Meanwhile, the last flowering day advanced, and flowering duration shortened along plant species richness gradients, with an average of 0.64 and 0.95 days change per plant species increase, respectively. Importantly, it was observed that plant species richness affected flowering phenology mainly through changes in plant nutrient acquisition traits (i.e., leaf nitrogen and carbon/nitrogen ratio). Our findings illustrate the non-negligible effects of intraspecific variation in functional traits on flowering phenology and highlight the importance of including functional traits in phenological models to improve predictions of plant phenology in response to nitrogen deposition and biodiversity loss.

14.
J Cell Mol Med ; 27(18): 2631-2642, 2023 09.
Article in English | MEDLINE | ID: mdl-37638698

ABSTRACT

Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.


Subject(s)
Ion Channels , Physiological Phenomena , Biological Transport , Homeostasis , Nutrients
15.
J Exp Clin Cancer Res ; 42(1): 194, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542342

ABSTRACT

BACKGROUND: RNA binding proteins (RBPs)-regulated gene expression play a vital role in various pathological processes, including the progression of cancer. However, the role of RBP in hepatocellular carcinoma (HCC) remains much unknown. In this study, we aimed to explore the contribution of RBP CCDC137 in HCC development. METHODS: We analyzed the altered expression level and clinical significance of CCDC137 in database and HCC specimens. In vitro cell assays and in vivo spontaneous mouse models were used to assess the function of CCDC137. Finally, the molecular mechanisms of how CCDC137 regulates gene expression and promotes HCC was explored. RESULTS: CCDC137 is aberrantly upregulated in HCC and correlates with poor clinical outcomes in HCC patients. CCDC137 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, CCDC137 binds with FOXM1, JTV1, LASP1 and FLOT2 mRNAs, which was revealed by APOBEC1-mediated profiling, to increase their cytoplasmic localization and thus enhance their protein expressions. Upregulation of FOXM1, JTV1, LASP1 and FLOT2 subsequently synergistically activate AKT signaling and promote HCC. Interestingly, we found that CCDC137 binds with the microprocessor protein DGCR8 and DGCR8 has a novel non-canonical function in mRNA subcellular localization, which mediates the cytoplasmic distribution of mRNAs regulated by CCDC137. CONCLUSIONS: Our results identify a critical proliferation-related role of CCDC137 and reveal a novel CCDC137/DGCR8/mRNA localization/AKT axis in HCC progression, which provide a potential target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Mice , Carcinoma, Hepatocellular/pathology , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
Genes Dis ; 10(6): 2491-2510, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37554208

ABSTRACT

Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in various biological processes across several species. Though many efforts have been devoted to the expansion of the lncRNAs landscape, much about lncRNAs is still unknown due to their great complexity. The development of high-throughput technologies and the constantly improved bioinformatic methods have resulted in a rapid expansion of lncRNA research and relevant databases. In this review, we introduced genome-wide research of lncRNAs in three parts: (i) novel lncRNA identification by high-throughput sequencing and computational pipelines; (ii) functional characterization of lncRNAs by expression atlas profiling, genome-scale screening, and the research of cancer-related lncRNAs; (iii) mechanism research by large-scale experimental technologies and computational analysis. Besides, primary experimental methods and bioinformatic pipelines related to these three parts are summarized. This review aimed to provide a comprehensive and systemic overview of lncRNA genome-wide research strategies and indicate a genome-wide lncRNA research system.

17.
Front Immunol ; 14: 1187890, 2023.
Article in English | MEDLINE | ID: mdl-37404813

ABSTRACT

The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.


Subject(s)
Monocytes , Transient Receptor Potential Channels , Animals , Humans , Transient Receptor Potential Channels/metabolism , Macrophages , Mammals/metabolism
18.
Adv Sci (Weinh) ; 10(23): e2301983, 2023 08.
Article in English | MEDLINE | ID: mdl-37271897

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive and fatal disease caused by a subset of cancer stem cells (CSCs). It is estimated that there are approximately 100 000 long noncoding RNAs (lncRNAs) in humans. However, the mechanisms by which lncRNAs affect tumor stemness remain poorly understood. In the present study, it is found that DIO3OS is a conserved lncRNA that is generally downregulated in multiple cancers, including HCC, and its low expression correlates with poor clinical outcomes in HCC. In in vitro cancer cell lines and an in vivo spontaneous HCC mouse model, DIO3OS markedly represses tumor development via its suppressive role in CSCs through downregulation of zinc finger E-box binding homeobox 1 (ZEB1). Interestingly, DIO3OS represses ZEB1 post-transcriptionally without affecting its mRNA levels. Subsequent experiments show that DIO3OS interacts with the NONO protein and restricts NONO-mediated nuclear export of ZEB1 mRNA. Overall, these findings demonstrate that the DIO3OS-NONO-ZEB1 axis restricts HCC development and offers a valuable candidate for CSC-targeted therapeutics for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
19.
Ann Bot ; 131(6): 1001-1010, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37119271

ABSTRACT

BACKGROUND AND AIMS: Nitrogen enrichment affects biodiversity, plant functional traits and ecosystem functions. However, the direct and indirect effects of nitrogen addition and biodiversity on the links between plant traits and ecosystem functions have been largely overlooked, even though multidimensional characteristics of plant functional traits are probably critical predictors of ecosystem functions. METHODS: To investigate the mechanism underlying the links between plant trait identity, diversity, network topology and above- and below-ground biomass along a plant species richness gradient under different nitrogen addition levels, a common garden experiment was conducted in which those driving factors were manipulated. KEY RESULTS: The study found that nitrogen addition increased above-ground biomass but not below-ground biomass, while species richness was positively associated with above- and below-ground biomass. Nitrogen addition had minor effects on plant trait identity and diversity, and on the connectivity and complexity of the trait networks. However, species richness increased above-ground biomass mainly by increasing leaf trait diversity and network modularity, and enhanced below-ground biomass through an increase in root nitrogen concentration and network modularity. CONCLUSIONS: The results demonstrate the mechanistic links between community biomass and plant trait identity, diversity and network topology, and show that the trait network architecture could be an indicator of the effects of global changes on ecosystem functions as importantly as trait identity and diversity.


Subject(s)
Biodiversity , Ecosystem , Biomass , Plants , Nitrogen
20.
Biomed Pharmacother ; 163: 114792, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121148

ABSTRACT

Hepatocellular carcinoma is the most common type of liver cancer and associated with a high fatality rate. This disease poses a major threat to human health worldwide. A considerable number of genetic and epigenetic factors are involved in the development of hepatocellular carcinoma. However, the molecular mechanism underlying the progression of hepatocellular carcinoma remains unclear. Karyopherin subunit alpha 2 (KPNA2), also termed importin α1, is a member of the nuclear transporter family. In recent years, KPNA2 has been gradually linked to the nuclear transport pathway for a variety of tumor-associated proteins. Furthermore, it promotes tumor development by participating in various pathophysiological processes such as cell proliferation, apoptosis, immune response, and viral infection. In hepatocellular carcinoma, it has been found that KPNA2 expression is significantly higher in liver cancer tissues versus paracancerous tissues. Moreover, it has been identified as a marker of poor prognosis and early recurrence in patients with hepatocellular carcinoma. Nevertheless, the role of KPNA2 in the development of hepatocellular carcinoma remains to be determined. This review summarizes the current knowledge on the pathogenesis and role of KPNA2 in hepatocellular carcinoma, and provides new directions and strategies for the diagnosis, treatment, and prediction of prognosis of this disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Active Transport, Cell Nucleus , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Karyopherins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...