Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Virol J ; 21(1): 123, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822405

ABSTRACT

BACKGROUND: Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS: A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS: We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.


Subject(s)
COVID-19 , Nomograms , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/complications , COVID-19/diagnosis , Male , Female , Middle Aged , Prognosis , Risk Factors , Cohort Studies , Aged , Adult , Hospitalization/statistics & numerical data , Risk Assessment , Post-Acute COVID-19 Syndrome
2.
Liver Int ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775078

ABSTRACT

BACKGROUND AND AIMS: The International AIH Pathology Group (IAIH-PG) put forward the new histological criteria of autoimmune hepatitis (AIH) in 2022, which have not undergone adequate verification. In this study, we verified the applicability of the new histological criteria in the population of Chinese patients with chronic liver disease, comparing it with the simplified criteria. METHODS: The gold standard for diagnosis in all patients was based on histological findings, combined with clinical manifestations and laboratory tests and determined after a follow-up period of at least 3 years. A total of 640 patients with various chronic liver diseases from multiple centres underwent scoring using the new histological criteria and the simplified criteria, comparing their diagnostic performance. RESULTS: In this study, the new histological criteria showed a sensitivity of 73.6% and 100% for likely and possible AIH, with specificities of 100% and 69.0% respectively. The coincidence rates of possible AIH for the new histological criteria, simplified histological criteria and simplified score were 81.7%, 72.8% and 69.7% respectively. For likely AIH, the rates were 89.2%, 75.9% and 65.6% respectively. Based on the new histological criteria, all patients with AIH were correctly diagnosed. Specifically, 73.6% were diagnosed with likely AIH and 26.4% were possible AIH. Additionally, the simplified histological criteria achieved a diagnosis rate of 98.6% for AIH, while the simplified score could only diagnose 53.8% of AIH. CONCLUSIONS: Compared with the simplified score and simplified histological criteria, the sensitivity and specificity of the new histological criteria for AIH were significantly improved. The results indicate that the new histological criteria exhibit high sensitivity and specificity for diagnosing AIH in China.

3.
ACS Appl Mater Interfaces ; 16(20): 26167-26181, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728216

ABSTRACT

Ni-rich layered ternary cathodes are promising candidates thanks to their low toxic Co-content and high energy density (∼800 Wh/kg). However, a critical challenge in developing Ni-rich cathodes is to improve cyclic stability, especially under high voltage (>4.3 V), which directly affects the performance and lifespan of the battery. In this study, niobium-doped strontium titanate (Nb-STO) is successfully synthesized via a facile solvothermal method and used as a surface modification layer onto the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The results exhibited that the Nb-STO modification significantly improved the cycling stability of the cathode material even under high-voltage (4.5 V) operational conditions. In particular, the best sample in our work could provide a high discharge capacity of ∼190 mAh/g after 100 cycles under 1 C with capacity retention over 84% in the voltage range of 3.0-4.5 V, superior to the pristine NCM811 (∼61%) and pure STO modified STO-811-600 (∼76%) samples under the same conditions. The improved electrochemical performance and stability of NCM811 under high voltage should be attributed to not only preventing the dissolution of the transition metals, further reducing the electrolyte's degradation by the end of charge, but also alleviating the internal resistance growth from uncontrollable cathode-electrolyte interface (CEI) evolution. These findings suggest that the as-synthesized STO with an optimized Nb-doping ratio could be a promising candidate for stabilizing Ni-rich cathode materials to facilitate the widespread commercialization of Ni-rich cathodes in modern LIBs.

4.
Langmuir ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781461

ABSTRACT

Well-tailored construction of icephobic surfaces with mechanical robustness and investigation of the structure-property relationships at the molecular level are highly desirable. Herein, a series of norbornene-based fluorinated polyolefin copolymers (FPOR-x) with varying norbornenyl dodecafluoroheptyl ester (NDFHE) molar fractions (0-100 mol %) were well-designed and fabricated via living ring-opening metathesis polymerization (ROMP) employing NDFHE and norbornenyl pentafluorophenyl ester (NPFPE) as the soft and hard segments, respectively. The mechanical and icephobic properties of the fluorinated copolymers can be regulated by adjusting the soft NDFHE contents. As a result, the well-designed norbornene-based copolymers exhibited a wide range of tunable mechanical properties, including tensile strength ranging from 0.2 to 26.4 MPa, elastic modulus ranging from 0.6 to 593.7 MPa, and breaking elongations ranging from 5718.7% to 3.7%, correlating with the proportion of soft NDFHE content. Furthermore, the synergistic interplay between soft and hard segments, particularly the hardness in the majority and softness in the minority or vice versa, could achieve a significant difference in the local modulus and enhance the propagations of cracks within the three-phase regions (soft regions/hard regions/ice), ultimately leading to a significant reduction in ice shear strength. Notably, FPOR-25% with a tensile strength of 12.0 MPa and an elastic modulus of 227.5 MPa exhibited a remarkably low ice shear strength of 57.7 kPa. This study not only highlights the relationship between the polymer molecular structure and surface icephobic properties but also breaks the limitations of icephobic surfaces with a low modulus.

5.
Front Public Health ; 12: 1381482, 2024.
Article in English | MEDLINE | ID: mdl-38784581

ABSTRACT

Background: Research based on observation has demonstrated a relationship between sleep traits and frailty; however, it remains uncertain if this correlation indicates causation. The purpose of this study was to look at the causal relationship that exists between frailty and sleep traits. Method: Using summaries from a genome-wide association study of self-reported sleep features and frailty index, we performed a bidirectional Mendelian randomization (MR) analysis. Examining the causal relationships between seven sleep-related traits and frailty was the goal. The major method used to calculate effect estimates was the inverse-variance weighted method, supplemented by the weighted median and MR-Egger approaches. The study investigated pleiotropy and heterogeneity using several methodologies, such as the MR-Egger intercept, the MR-PRESSO approach, and the Cochran's Q test. We took multivariate Mendelian randomization and genetic correlations between related traits to enhance the confidence of the results. Furthermore, we used MRlap to correct for any estimation bias due to sample overlap. Results: Insomnia, napping during the day, and sleep apnea syndrome exhibited a positive connection with the frailty index in forward MR analysis. Conversely, there is a negative link between getting up in the morning, snoring and sleep duration with the frailty index. During the reverse MR analysis, the frailty index exhibited a positive correlation with insomnia, napping during the day, and sleep apnea syndrome, while demonstrating a negative correlation with sleep duration. There was no direct correlation between snoring, chronotype, and frailty. In MVMR analyses, the causal effect of sleep characteristics on frailty indices remained consistent after adjusting for potential confounders including BMI, smoking, and triglycerides. Conclusion: The findings of our investigation yield novel evidence that substantiates the notion of a bidirectional causal connection between sleep traits and frailty. Through the optimization of sleep, it is potentially feasible to hinder, postpone, or even reverse the state of frailty, and we proposed relevant interventions.


Subject(s)
Causality , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Sleep , Humans , Frailty/genetics , Sleep/physiology , Sleep/genetics , Male , Female , Aged , Risk Factors , Middle Aged , Sleep Wake Disorders/genetics , Sleep Wake Disorders/epidemiology
6.
Hypertens Res ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760520

ABSTRACT

The temporal relationship between non-alcoholic fatty liver disease (NAFLD) and hypertension remains highly controversial, with ongoing debates on whether NAFLD induces hypertension or vice versa. We employed cross-lagged panel models to investigate the temporal relationship between hepatic steatosis (assessed by Fatty Liver Index [FLI] in the main analysis, and by Proton Density Fat Fraction [PDFF] in the validation study) and blood pressure (systolic and diastolic blood pressure [SBP/ DBP]). Subsequently, we employed causal mediation models to explore the mediation effect in CVD development, including ischemic heart disease and stroke. The main analysis incorporated repeated measurement data of 5,047 participants from the China Multi-Ethnic Cohort (CMEC) and 5,685 participants from the UK Biobank (UKB). In both cohorts, the path coefficients from FLI to blood pressure were significant and greater than the path from blood pressure to FLI, with ßFLI→SBP = 0.081, P < 0.001 versus ßSBP→FLI = 0.020, P = 0.031; ßFLI→DBP = 0.082, P < 0.001 versus ßDBP→FLI = -0.006, P = 0.480 for CEMC, and ßFLI→SBP = 0.057, P < 0.001 versus ßSBP→FLI = -0.001, P = 0.727; ßFLI→DBP = 0.061, P < 0.001, versus ßDBP→FLI = -0.006, P = 0.263 for UKB. The validation study with 962 UKB participants using PDFF consistently supported these findings. In the mediation analyses encompassing 11,108 UKB participants, SBP and DBP mediated 12.2% and 5.2% of the hepatic steatosis-CVD association, respectively. The proportions were lower for ischemic heart disease (SBP: 6.1%, DBP: non-statistically significant -6.8%), and relatively stronger for stroke (SBP: 19.4%, DBP: 26.1%). In conclusion, hepatic steatosis more strongly contributes to elevated blood pressure than vice versa. Blood pressure elevation positively mediates the hepatic steatosis-CVD association, particularly in stroke compared to ischemic heart disease.

7.
Nat Commun ; 15(1): 4115, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750013

ABSTRACT

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.


Subject(s)
Calcium , Cryoelectron Microscopy , Magnesium , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Magnesium/metabolism , Calcium/metabolism , Binding Sites , Animals , Molecular Dynamics Simulation , Adenosine Triphosphate/metabolism , Humans , Rabbits
8.
Eur J Med Res ; 29(1): 277, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725045

ABSTRACT

BACKGROUND: Metabolic disorders (MetDs) have been demonstrated to be closely linked to numerous diseases. However, the precise association between MetDs and pulmonary tuberculosis (PTB) remains poorly understood. METHOD: Summary statistics for exposure and outcomes from genome-wide association studies (GWASs) for exposures and outcomes were obtained from the BioBank Japan Project (BBJ) Gene-exposure dataset. The 14 clinical factors were categorized into three groups: metabolic laboratory markers, blood pressure, and the MetS diagnostic factors. The causal relationship between metabolic factors and PTB were analyzed using two-sample Mendelian Randomization (MR). Additionally, the direct effects on the risk of PTB were investigated through multivariable MR. The primary method employed was the inverse variance-weighted (IVW) model. The sensitivity of this MR analysis was evaluated using MR-Egger regression and the MR-PRESSO global test. RESULTS: According to the two-sample MR, HDL-C, HbA1c, TP, and DM were positively correlated with the incidence of active TB. According to the multivariable MR, HDL-C (IVW: OR 2.798, 95% CI 1.484-5.274, P = 0.001), LDL (IVW: OR 4.027, 95% CI 1.140-14.219, P = 0.03) and TG (IVW: OR 2.548, 95% CI 1.269-5.115, P = 0.009) were positively correlated with the occurrence of PTB. TC (OR 0.131, 95% CI 0.028-0.607, P = 0.009) was negatively correlated with the occurrence of PTB. We selected BMI, DM, HDL-C, SBP, and TG as the diagnostic factors for metabolic syndrome. DM (IVW, OR 1.219, 95% CI 1.040-1.429 P = 0.014) and HDL-C (IVW, OR 1.380, 95% CI 1.035-1.841, P = 0.028) were directly correlated with the occurrence of PTB. CONCLUSIONS: This MR study demonstrated that metabolic disorders, mainly hyperglycemia, and dyslipidemia, are associated with the incidence of active pulmonary tuberculosis.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Metabolic Diseases , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/blood , Metabolic Diseases/genetics , Metabolic Diseases/epidemiology , Risk Factors
9.
Mol Nutr Food Res ; : e2300727, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813726

ABSTRACT

SCOPE: The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS: PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION: Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.

10.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703850

ABSTRACT

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Subject(s)
Cadmium , Mitochondria , Pyroptosis , Testis , Animals , Cadmium/toxicity , Male , Mice , Testis/drug effects , Testis/metabolism , Pyroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Environmental Pollutants/toxicity , Proteostasis , Mitochondrial Proteins/metabolism , Environmental Exposure/adverse effects , DNA, Mitochondrial , ATP-Dependent Proteases/metabolism , Proteotoxic Stress
11.
Ultramicroscopy ; 261: 113964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579523

ABSTRACT

Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.

12.
J Anim Sci Biotechnol ; 15(1): 50, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566217

ABSTRACT

BACKGROUND: Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD: Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS: We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1ß, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS: In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.

13.
Gut Liver ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623061

ABSTRACT

Background/Aims: : The histological characteristics and natural history of precirrhotic primary biliary cholangitis (PBC) with portal hypertension (PH) are unclear. Our aim was to clarify the prevalence, risk factors, and histological characteristics of precirrhotic PBC patients with PH. Methods: : This retrospective study compared the clinical features, histological characteristics, and response to ursodeoxycholic acid (UDCA) between the PH and non-PH groups of precirrhotic PBC patients. Results: : Out of 165 precirrhotic PBC patients, 40 (24.2%) also had PH. According to histological stage 1, 2 and 3 disease, 5.3% (1/19), 17.3% (17/98), and 45.8% (22/48) of patients also had PH, respectively. Precirrhotic PBC with PH was significantly positively correlated with bile duct loss, degree of cytokeratin 7 positivity, and degree of fibrosis in the portal area, but significantly negatively correlated with lymphoid follicular aggregation. Compared to the non-PH group, patients in the PH group showed a higher prevalence of obliterative portal venopathy, incomplete septal fibrosis, portal tract abnormalities and non-zonal sinusoidal dilatation (p<0.05). In addition, patients with PH were more likely to present with symptoms of jaundice, ascites, epigastric discomfort, a poorer response to UDCA, and more decompensation events (p<0.05). High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values were risk factors for precirrhotic PBC with PH. Conclusions: : Approximately 24.2% of precirrhotic PBC patients have PH, which is histologically related to the injury of bile ducts. High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values are associated with increased risk of precirrhotic PBC with PH.

14.
BMJ Open ; 14(4): e075269, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569715

ABSTRACT

OBJECTIVES: The objective was to investigate the associations of maternal prepregnancy body mass index (BMI) and gestational weight gain (GWG) trajectories with adverse pregnancy outcomes (APOs). DESIGN: This was a prospective cohort study. SETTING: This study was conducted in Shanghai Pudong New Area Health Care Hospital for Women and Children, Shanghai, China. PRIMARY AND SECONDARY OUTCOME MEASURES: A cohort study involving a total of 2174 pregnant women was conducted. Each participant was followed to record weekly weight gain and pregnancy outcomes. The Institute of Medicine classification was used to categorise prepregnancy BMI, and four GWG trajectories were identified using a latent class growth model. RESULTS: The adjusted ORs for the risks of large for gestational age (LGA), macrosomia, gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP) were significantly greater for women with prepregnancy overweight/obesity (OR=1.77, 2.13, 1.95 and 4.24; 95% CI 1.3 to 2.42, 1.32 to 3.46, 1.43 to 2.66 and 2.01 to 8.93, respectively) and lower for those who were underweight than for those with normal weight (excluding HDP) (OR=0.35, 0.27 and 0.59; 95% CI 0.22 to 0.53, 0.11 to 0.66 and 0.36 to 0.89, respectively). The risk of small for gestational age (SGA) and low birth weight (LBW) was significantly increased in the underweight group (OR=3.11, 2.20; 95% CI 1.63 to 5.92, 1.10 to 4.41; respectively) compared with the normal-weight group; however, the risk did not decrease in the overweight/obese group (p=0.942, 0.697, respectively). GWG was divided into four trajectories, accounting for 16.6%, 41.4%, 31.7% and 10.3% of the participants, respectively. After adjustment for confounding factors, the risk of LGA was 1.54 times greater for women in the slow GWG trajectory group than for those in the extremely slow GWG trajectory group (95% CI 1.07 to 2.21); the risk of SGA and LBW was 0.37 times and 0.46 times lower for women in the moderate GWG trajectory group and 0.14 times and 0.15 times lower for women in the rapid GWG trajectory group, respectively; the risk of macrosomia and LGA was 2.65 times and 2.70 times greater for women in the moderate GWG trajectory group and 3.53 times and 4.36 times greater for women in the rapid GWG trajectory group, respectively; and the women in the other three trajectory groups had a lower risk of GDM than did those in the extremely slow GWG trajectory group, but there was not much variation in the ORs. Notably, different GWG trajectories did not affect the risk of HDP. CONCLUSIONS: As independent risk factors, excessively high and low prepregnancy BMI and GWG can increase the risk of APOs.


Subject(s)
Diabetes, Gestational , Gestational Weight Gain , Child , Female , Pregnancy , Humans , Pregnancy Outcome/epidemiology , Overweight/complications , Overweight/epidemiology , Body Mass Index , Fetal Macrosomia/epidemiology , Fetal Macrosomia/complications , Cohort Studies , Thinness/complications , Thinness/epidemiology , Prospective Studies , China/epidemiology , Weight Gain , Obesity/complications , Obesity/epidemiology , Diabetes, Gestational/epidemiology , Weight Loss
15.
Angew Chem Int Ed Engl ; : e202401311, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606491

ABSTRACT

Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.

16.
Environ Pollut ; 348: 123800, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38518970

ABSTRACT

The overuse and misuse of antibiotics have resulted in the pollution of antibiotics and antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (WWTPs), posing threats to ecological security and human health. Thus, a comprehensive investigation was conducted to assess the occurrence, removal efficiency, and ecological risk of antibiotics, along with the diversity, abundance, and co-occurrence of ARGs, and their correlations in 13 WWTPs along the Yangtze River Basin. Among 35 target antibiotics, 23 antibiotics within 6 categories were detected in all the samples. Amoxicillin (AMO), ofloxacin (OFL), and pefloxacin (PEF) were predominant in influents, while AMO exhibited dominance with the highest concentration of 1409 ng/L in effluents. Although antibiotic removal performance varied among different WWTPs, a significant decrease in each antibiotic category and overall antibiotics was observed in effluents compared with that in influents (p < 0.05). Remarkably, ecological risk assessment revealed high risks associated with AMO and ciprofloxacin (CIP) and medium risks linked to several antibiotics, notably including OFL, roxithromycin (ROX), clarithromycin (CLA), and tetracycline (TC). Furthermore, 96 ARG subtypes within 12 resistance types were detected in this study, and the total absolute abundance and diversity of ARGs were significantly decreased from influents to effluents (p < 0.05). Enrichment of 38 ARGs (e.g., blaNDM, ermA, vatA, mexA, and dfrA25) in effluents indicated potential health risks. Various mobile genetic elements (MGEs), exhibited significant correlations with a majority of ARGs in both influents and effluents, such as intⅠ1, tnpA1, tnpA5, and tp614, underscoring the important role of MGEs in contributing to the ARG dissemination. Many antibiotics displayed lower correlations with corresponding ARGs, but exhibited higher correlations with other ARGs, suggesting complex selective pressures influencing ARG propagation. Overall, the incomplete elimination of antibiotics and ARGs in WWTPs is likely to pose adverse impacts on aquatic ecosystems in the Yangtze River Basin.


Subject(s)
Anti-Bacterial Agents , Water Purification , Humans , Wastewater , Genes, Bacterial , Rivers , Ecosystem , Prevalence , Drug Resistance, Microbial/genetics , China
17.
Article in English | MEDLINE | ID: mdl-38536699

ABSTRACT

Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current modeling of brain-inspired spiking neural networks (SNN), backpropagation through time is widely adopted because it can achieve high performance using a small number of time steps. Nevertheless, the synaptic scaling mechanism has not yet been well touched. In this work, we propose an experience-dependent adaptive synaptic scaling mechanism (AS-SNN) for spiking neural networks. The learning process has two stages: First, in the forward path, adaptive short-term potentiation or depression is triggered for each synapse according to afferent stimuli intensity accumulated by presynaptic historical neural activities. Second, in the backward path, long-term consolidation is executed through gradient signals regulated by the corresponding scaling factor. This mechanism shapes the pattern selectivity of synapses and the information transfer they mediate. We theoretically prove that the proposed adaptive synaptic scaling function follows a contraction map and finally converges to an expected fixed point, in accordance with state-of-the-art results in three tasks on perturbation resistance, continual learning, and graph learning. Specifically, for the perturbation resistance and continual learning tasks, our approach improves the accuracy on the N-MNIST benchmark over the baseline by 44% and 25%, respectively. An expected firing rate callback and sparse coding can be observed in graph learning. Extensive experiments on ablation study and cost evaluation evidence the effectiveness and efficiency of our nonparametric adaptive scaling method, which demonstrates the great potential of SNN in continual learning and robust learning.

18.
J Psychosom Res ; 179: 111641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461621

ABSTRACT

OBJECTIVE: This study employed bidirectional two-sample Mendelian randomization (MR) to investigate the causal links between psychiatric disorders and sensorineural hearing loss (SNHL). METHODS: Instrumental variables were chosen from genome-wide association studies of schizophrenia (SCH, N = 127,906), bipolar disorder (BD, N = 51,710), major depressive disorder (MDD, N = 500,199), and SNHL (N = 212,544). In the univariable MR analysis, the inverse-variance weighted method (IVW) was conducted as the primary analysis, complemented by various sensitivity analyses to ensure result robustness. RESULTS: SCH exhibited a decreased the risk of SNHL (OR = 0.949, P = 0.005), whereas BD showed an increased incidence of SNHL (OR = 1.145, P = 0.005). No causal association was found for MDD on SNHL (OR = 1.088, P = 0.246). Multivariable MR validated these results. In the reverse direction, genetically predicted SNHL was linked to a decreased risk of SCH with suggestive significance (OR = 0.912, P = 0.023). No reverse causal relationships were observed for SNHL influencing BD or MDD. These findings remained consistent across various MR methods and sensitivity analyses. CONCLUSION: This study demonstrated that the causal relationships between diverse psychiatric disorders with SNHL were heterogeneous. Specifically, SCH was inversely associated with SNHL susceptibility, and similarly, a reduced risk of SNHL was observed in schizophrenia patients. In contrast, BD exhibited an increased incidence of SNHL, although SNHL did not influence the prevalence of BD. No causal association between MDD and SNHL was found.


Subject(s)
Depressive Disorder, Major , Hearing Loss, Sensorineural , Mental Disorders , Humans , Mendelian Randomization Analysis , Depressive Disorder, Major/complications , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics
19.
Article in English | MEDLINE | ID: mdl-38329859

ABSTRACT

Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assessed their applicability to the specifics of SNNs. In this article, we first identify that this negligence leads to impeded information flow and the accompanying degradation problem in a spiking version of vanilla ResNet. To address this issue, we propose a novel SNN-oriented residual architecture termed MS-ResNet, which establishes membrane-based shortcut pathways, and further proves that the gradient norm equality can be achieved in MS-ResNet by introducing block dynamical isometry theory, which ensures the network can be well-behaved in a depth-insensitive way. Thus, we are able to significantly extend the depth of directly trained SNNs, e.g., up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. To validate the effectiveness of MS-ResNet, experiments on both frame-based and neuromorphic datasets are conducted. MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, which is the highest to the best of our knowledge in the domain of directly trained SNNs. Great energy efficiency is also observed, with an average of only one spike per neuron needed to classify an input sample. We believe our powerful and scalable models will provide strong support for further exploration of SNNs.

20.
Behav Sci (Basel) ; 14(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38392479

ABSTRACT

We explore whether there are value preferences of creative workers in addition to tolerance and how these value preferences vary among different occupation categories and countries. We use a dataset of 1968 and 1076 observations in China and the U.S., respectively, from the World Values Survey dataset (2017-2020, wave 7) (WVS 7), with a Structure Equation Modelling (SEM) and Multinomial Logit Model (MLM) at the micro level. The findings reveal that (1) the Chinese sample is more likely to have a balanced preference of tolerance towards migrants, religions, and homosexuality, while the American sample's preference of tolerance is much more likely to be interpreted as accepting homosexuality only; (2) the American sample also shows preferences towards responsibility, technology, work style, and political actions, while a preference for happiness and political actions is identified in the Chinese sample; and (3) with a higher level of creativity, the difference regarding understanding of tolerance is more likely to be highlighted between China and the U.S. This study provides a quite unconventional perspective for understanding the composition of preferences and, to a certain extent, reconciles the inconsistency between the theoretical advocacy of building up a selected milieu and the reality of creative workers' blended value mix.

SELECTION OF CITATIONS
SEARCH DETAIL
...