Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 21(22): 6800-3, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21982494

ABSTRACT

Design, synthesis and structure-activity relationship of a series of biphenylsulfonamido-3-methylbutanoic acid based aggrecanase-1 inhibitors are described. In addition to robust aggrecanase-1 inhibition, these compounds also exhibit potent MMP-13 activity. In cell-based cartilage explants assay compound 48 produced 87% inhibition of proteoglycan degradation at 10 µg/mL. Good pharmacokinetic properties were demonstrated by 46 with a half-life of 6h and bioavailability of 23%.


Subject(s)
ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , Biphenyl Compounds/pharmacology , Procollagen N-Endopeptidase/antagonists & inhibitors , Procollagen N-Endopeptidase/metabolism , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , ADAMTS4 Protein , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Drug Design , Humans , Male , Matrix Metalloproteinase 13/metabolism , Models, Molecular , Osteoarthritis/drug therapy , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Proteoglycans/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
3.
Bioorg Med Chem Lett ; 21(16): 4758-61, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21742493

ABSTRACT

Synthesis, modeling and structure-activity relationship of indazoles as inhibitors of Tpl2 kinase are described. From a high throughput screening effort, we identified an indazole hit compound 5 that has a single digit micromolar Tpl2 activity. Through SAR modifications at the C3 and C5 positions of the indazole, we discovered compound 31 with good potency in LANCE assay and cell-based p-Erk assay.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , MAP Kinase Kinase Kinases/metabolism , Models, Molecular , Molecular Structure , Monocytes/enzymology , Monocytes/metabolism , Proto-Oncogene Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(16): 4546-50, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19625186

ABSTRACT

Potent 3,4-disubstituted benzofuran P1' MMP-13 inhibitors have been prepared. Selectivity over MMP-2 was achieved through a substituent at the C4 position of the benzofuran P1' moiety of the molecule. By replacing a backbone benzene with a pyridine and valine with threonine, compounds (e.g., 44) with greatly reduced plasma protein binding were also obtained.


Subject(s)
Benzofurans/chemistry , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemistry , Animals , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Binding , Rabbits , Serum Albumin/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(13): 3485-8, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19464884

ABSTRACT

Tpl2 (cot/MAP3K8) is an upstream kinase of MEK in the ERK pathway. It plays an important role in Tumor Necrosis Factor-alpha (TNF-alpha) production and signaling. We have discovered that 8-halo-4-(3-chloro-4-fluoro-phenylamino)-6-[(1H-[1,2,3]triazol-4-ylmethyl)-amino]-quinoline-3-carbonitriles (4) are potent inhibitors of this enzyme. In order to improve the inhibition of TNF-alpha production in LPS-stimulated human blood, a series of analogs with a variety of substitutions around the triazole moiety were studied. We found that a cyclic amine group appended to the triazole ring could considerably enhance potency, aqueous solubility, and cell membrane permeability. Optimization of these cyclic amine groups led to the identification of 8-chloro-4-(3-chloro-4-fluorophenylamino)-6-((1-(1-ethylpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)methylamino)quinoline-3-carbonitrile (34). In a LPS-stimulated rat inflammation model, compound 34 showed good efficacy in inhibiting TNF-alpha production.


Subject(s)
Anti-Inflammatory Agents/chemistry , MAP Kinase Kinase Kinases/antagonists & inhibitors , Nitriles/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Quinolines/chemistry , Tumor Necrosis Factor-alpha/blood , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Female , Humans , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/metabolism , Monocytes/drug effects , Monocytes/immunology , Nitriles/chemical synthesis , Nitriles/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/biosynthesis
6.
Bioorg Med Chem Lett ; 19(9): 2487-91, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19329309

ABSTRACT

The prevention of aggrecan (a key component of cartilage) cleavage via the inhibition of aggrecanase-1 may provide a unique opportunity to stop the progression of cartilage degradation in osteoarthritis. The evaluation of a series of biphenylsulfonamides resulted in the identification of the ((4-keto)-phenoxy)methyl biphenyl-4-sulfonamides analogs (19-21 and 24) with improved Agg-1 inhibition and MMP-2, MMP-13 activity.


Subject(s)
ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , Chemistry, Pharmaceutical/methods , Osteoarthritis/drug therapy , Procollagen N-Endopeptidase/antagonists & inhibitors , Procollagen N-Endopeptidase/metabolism , Sulfonamides/chemical synthesis , ADAMTS4 Protein , Cartilage/drug effects , Cartilage/metabolism , Drug Design , Humans , Inhibitory Concentration 50 , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Models, Chemical , Molecular Conformation , Proteoglycans/chemistry , Sulfonamides/pharmacology
7.
J Med Chem ; 51(12): 3388-413, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18498150

ABSTRACT

The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays. The binding of these compounds has been further examined using isothermal titration calorimetry. Finally, these compounds have shown efficacy when dosed orally in multiple acute and chronic prostaglandin and leukotriene dependent in vivo models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Group IV Phospholipases A2/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Benzoates/chemistry , Benzoates/pharmacology , Biological Availability , Bronchoconstriction/drug effects , Calorimetry , Carrageenan , Cell Line , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/chemically induced , Edema/drug therapy , Humans , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Male , Mice , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
8.
J Biol Chem ; 282(46): 33295-33304, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-17848581

ABSTRACT

Tumor necrosis factor alpha (TNFalpha) is a pro-inflammatory cytokine that controls the initiation and progression of inflammatory diseases such as rheumatoid arthritis. Tpl2 is a MAPKKK in the MAPK (i.e. ERK) pathway, and the Tpl2-MEK-ERK signaling pathway is activated by the pro-inflammatory mediators TNFalpha, interleukin (IL)-1beta, and bacterial endotoxin (lipopolysaccharide (LPS)). Moreover, Tpl2 is required for TNFalpha expression. Thus, pharmacologic inhibition of Tpl2 should be a valid approach to therapeutic intervention in the pathogenesis of rheumatoid arthritis and other inflammatory diseases in humans. We have developed a series of highly selective and potent Tpl2 inhibitors, and in the present study we have used these inhibitors to demonstrate that the catalytic activity of Tpl2 is required for the LPS-induced activation of MEK and ERK in primary human monocytes. These inhibitors selectively target Tpl2 in these cells, and they block LPS- and IL-1beta-induced TNFalpha production in both primary human monocytes and human blood. In rheumatoid arthritis fibroblast-like synoviocytes these inhibitors block ERK activation, cyclooxygenase-2 expression, and the production of IL-6, IL-8, and prostaglandin E(2), and the matrix metalloproteinases MMP-1 and MMP-3. Taken together, our results show that inhibition of Tpl2 in primary human cell types can decrease the production of TNFalpha and other pro-inflammatory mediators during inflammatory events, and they further support the notion that Tpl2 is an appropriate therapeutic target for rheumatoid arthritis and other human inflammatory diseases.


Subject(s)
Blood/drug effects , Inflammation/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/physiology , Monocytes/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/physiology , Synovial Fluid/drug effects , Arthritis, Rheumatoid/drug therapy , Catalysis , Dinoprostone/metabolism , HeLa Cells , Humans , Inhibitory Concentration 50 , Interleukin-6/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , MAP Kinase Signaling System , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism
9.
Bioorg Med Chem ; 15(19): 6425-42, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17664070

ABSTRACT

We have previously reported the discovery and initial SAR of the [1,7]naphthyridine-3-carbonitriles and quinoline-3-carbonitriles as Tumor Progression Loci-2 (Tpl2) kinase inhibitors. In this paper, we report new SAR efforts which have led to the identification of 4-alkylamino-[1,7]naphthyridine-3-carbonitriles. These compounds show good in vitro and in vivo activity against Tpl2 and improved pharmacokinetic properties. In addition they are highly selective for Tpl2 kinase over other kinases, for example, EGFR, MEK, MK2, and p38. Lead compound 4-cycloheptylamino-6-[(pyridin-3-ylmethyl)-amino]-[1,7]naphthyridine-3-carbonitrile (30) was efficacious in a rat model of LPS-induced TNF-alpha production.


Subject(s)
Enzyme Inhibitors/pharmacology , MAP Kinase Kinase Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Animals , Binding, Competitive , Cycloheptanes/chemistry , Cycloheptanes/pharmacology , Enzyme Inhibitors/chemistry , ErbB Receptors/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Naphthyridines/chemistry , Naphthyridines/pharmacology , Nitriles/chemistry , Nitriles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Rats , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
10.
J Med Chem ; 50(19): 4728-45, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17715908

ABSTRACT

Tumor progression loci-2 (Tpl2) (Cot/MAP3K8) is a serine/threonine kinase in the MAP3K family directly upstream of MEK. Recent studies using Tpl2 knockout mice have indicated an important role for Tpl2 in the lipopolysaccharide (LPS) induced production of tumor necrosis factor alpha (TNF-alpha) and other proinflammatory cytokines involved in diseases such as rheumatoid arthritis. Initial 4-anilino-6-aminoquinoline-3-carbonitrile leads showed poor selectivity for Tpl2 over epidermal growth factor receptor (EGFR) kinase. Using molecular modeling and crystallographic data of the EGFR kinase domain with and without an EGFR kinase-specific 4-anilinoquinazoline inhibitor (erlotinib, Tarceva), we hypothesized that we could diminish the inhibition of EGFR kinase by substitution at the C-8 position of our 4-anilino-6-aminoquinoline-3-carbonitrile leads. The 8-substituted-4-anilino-6-aminoquinoline-3-carbonitriles were prepared from the appropriate 2-substituted 4-nitroanilines. Modifications to the C-6 and C-8 positions led to the identification of compounds with increased inhibition of TNF-alpha release from LPS-stimulated rat and human blood, and these analogues were also highly selective for Tpl2 kinase over EGFR kinase. Further structure-activity based modifications led to the identification of 8-bromo-4-(3-chloro-4-fluorophenylamino)-6-[(1-methyl-1H-imidazol-4-yl)methylamino]quinoline-3-carbonitrile, which demonstrated in vitro as well as in vivo efficacy in inhibition of LPS-induced TNF-alpha production.


Subject(s)
Aminoquinolines/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Imidazoles/chemical synthesis , MAP Kinase Kinase Kinases/antagonists & inhibitors , Models, Molecular , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Aminoquinolines/pharmacokinetics , Aminoquinolines/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Crystallography, X-Ray , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Erlotinib Hydrochloride , Female , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , In Vitro Techniques , MAP Kinase Kinase Kinases/biosynthesis , MAP Kinase Kinase Kinases/chemistry , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/chemistry , Quinazolines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/chemistry
11.
Bioorg Med Chem Lett ; 16(23): 6067-72, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16973359

ABSTRACT

The synthesis and structure-activity studies of a series of quinoline-3-carbonitriles as inhibitors of Tpl2 kinase are described. Potent inhibitors of Tpl2 kinase with selectivity against a panel of selected kinases in enzymatic assays and specificity in cell-based phosphorylation assays in LPS-treated human monocytes were identified. Selected inhibitors with moderate activity in human whole blood assay effectively inhibited LPS/D-Gal induced TNFalpha release when administered intraperitoneally in mice.


Subject(s)
Arthritis, Rheumatoid/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Nitriles/chemistry , Nitriles/pharmacology , Quinolines/chemistry , Tumor Necrosis Factor-alpha/biosynthesis , Arthritis, Rheumatoid/drug therapy , Cross-Linking Reagents/chemistry , Humans , Imidazoles/chemistry , MAP Kinase Kinase Kinases/metabolism , Molecular Structure , Monocytes/drug effects , Monocytes/metabolism , Nitriles/chemical synthesis , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 16(2): 311-6, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16275085

ABSTRACT

Aggrecanases are recently discovered enzymes that cleave aggrecan, a key component of cartilage. Aggrecanase inhibitors may provide a unique means to halt the progression of cartilage destruction in osteoarthritis. The synthesis and evaluation of biphenylsulfonamidocarboxylic acid inhibitors of aggrecanase-1 are reported. Compound 24 demonstrated 89% inhibition of proteoglycan degradation at 10 microg/mL and has an oral bioavailability in rat of 35%.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Biphenyl Compounds/chemistry , Carboxylic Acids , Enzyme Inhibitors , Procollagen N-Endopeptidase/antagonists & inhibitors , Sulfonamides/chemistry , ADAMTS4 Protein , Administration, Oral , Animals , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Collagenases/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Matrix Metalloproteinase 13 , Matrix Metalloproteinase Inhibitors , Models, Molecular , Molecular Structure , Proteoglycans/drug effects , Proteoglycans/metabolism , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...