Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Commun Biol ; 7(1): 561, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734744

ABSTRACT

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Protein Binding , Models, Molecular , Amino Acid Sequence , Protein Domains
2.
Adv Mater ; : e2404160, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815276

ABSTRACT

Photo-adaptive synaptic devices enable in-sensor processing of complex illumination scenes, while second-order adaptive synaptic plasticity improves learning efficiency by modifying the learning rate in a given environment. The integration of above adaptations in one phototransistor device will provide opportunities for developing high-efficient machine vision system. Here, we report a dually adaptable organic heterojunction transistor as a working unit in the system, which facilitates precise contrast enhancement and improves convergence rate under harsh lighting conditions. The photo-adaptive threshold sliding originated from the bidirectional photoconductivity caused by the light intensity-dependent photogating effect. Metaplasticity is successfully implemented owing to the combination of ambipolar behavior and charge trapping effect. By utilizing the transistor array in a machine vision system, the details and edges can be highlighted in the 0.4% low-contrast images, and a high recognition accuracy of 93.8% with a significantly promoted convergence rate by about 5 times were also achieved. These results open a strategy to fully implement metaplasticity in optoelectronic devices and suggest their vision processing applications in complex lighting scences. This article is protected by copyright. All rights reserved.

3.
J Exp Bot ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571323

ABSTRACT

Submergence stress hinders the direct seeding in rice cultivation. Rapid elongation of rice seed coleoptiles to reach the water surface enables rice to survive submergence stress. Gibberellin (GA) positively influences rice growth. However, the molecular mechanisms underlying GA-regulated coleoptile elongation under submergence conditions remain unclear. Here, we performed a WGCNA analysis to preliminarily investigate the mechanisms. Our results identify four key modules with a high correlation to the GA regulation of rice submergence tolerance. The genes within these modules are mainly involved in Golgi apparatus and carbohydrate metabolic pathways, suggesting involvement of these biological processes in enhancing rice submergence tolerance. Moreover, natural variation analysis reveals that the hub genes, specifically, Os03g0337900, Os03g0355600, and Os07g0638400, exhibited a strong correlation with the subspecies divergence of the coleoptile elongation phenotype. Mutation of Os07g0638400 results in a lower germination potential and a stronger inhibition of coleoptile elongation under submergence conditions in rice, indicating the reliability of the analyses. The hub genes identified in this study provide deep insights into understanding the molecular mechanisms underlying GA-dependent submergence stress tolerance in rice and provide a theoretical basis for innovating rice germplasm for direct seeding application.

4.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602471

ABSTRACT

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

5.
bioRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38645128

ABSTRACT

A main limitation of bulk transcriptomic technologies is that individual measurements normally contain contributions from multiple cell populations, impeding the identification of cellular heterogeneity within diseased tissues. To extract cellular insights from existing large cohorts of bulk transcriptomic data, we present CSsingle, a novel method designed to accurately deconvolve bulk data into a predefined set of cell types using a scRNA-seq reference. Through comprehensive benchmark evaluations and analyses using diverse real data sets, we reveal the systematic bias inherent in existing methods, stemming from differences in cell size or library size. Our extensive experiments demonstrate that CSsingle exhibits superior accuracy and robustness compared to leading methods, particularly when dealing with bulk mixtures originating from cell types of markedly different cell sizes, as well as when handling bulk and single-cell reference data obtained from diverse sources. Our work provides an efficient and robust methodology for the integrated analysis of bulk and scRNA-seq data, facilitating various biological and clinical studies.

6.
Int J Nanomedicine ; 19: 2807-2821, 2024.
Article in English | MEDLINE | ID: mdl-38525014

ABSTRACT

Background: Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods: An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results: The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion: These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.


Subject(s)
Nanoparticles , Phosphatidylethanolamines , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Drug Carriers/chemistry , Linoleic Acid , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Cell Movement , Cell Proliferation , Methylcellulose
7.
Drug Dev Ind Pharm ; 50(5): 401-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38466185

ABSTRACT

OBJECTIVE: Magnolol (MG) and Brucea javanica (L.) Merr. oil (BJO) possess synergetic anti-tumor effects, but have poor water solubility and stability, which results in low oral bioavailability. SIGNIFICANCE: The MG loaded self-microemulsion drug delivery system (MG-SMDDS) with BJO as oil phase component was utilized to improve the cellular uptake and synergetic anti-tumor effects. METHODS: Compatibility study and pseudoternary phase diagram (PTPD) were respectively employed to screen for the composition and proportion of oil phase in the formulation. Central composite design-effect surface method was applied to optimize proportion of each formulation condition. The droplet size, ζ-potential, colloid stability, encapsulation rate (ER) and in vitro dissolution rate of MG-SMDDS were evaluated. Furthermore, cellular uptake and cytotoxicity of the microemulsion on HepG2 cells were assessed. RESULTS: The optimal composition of MG-SMDDS was: MG (9.09%), castor oil (7.40%), BJO (2.47%), Cremophor EL 35 (54.04%) and 1, 2-propanediol (27.01%). The MG-SMDDS exhibited satisfactory droplet size, ζ-potential, colloid stability and ER, as well as faster dissolution rate than free MG. More importantly, SMEDDS containing BJO could enhance the cellular uptake and cytotoxicity of free BJO and free MG on tumor cells. CONCLUSIONS: The BJO self-microemulsion delivery technique can provide an idea for design of oral delivery vehicles based on BJO.


Subject(s)
Biphenyl Compounds , Brucea , Drug Delivery Systems , Emulsions , Lignans , Plant Oils , Solubility , Lignans/administration & dosage , Lignans/pharmacology , Lignans/pharmacokinetics , Lignans/chemistry , Humans , Brucea/chemistry , Biphenyl Compounds/chemistry , Hep G2 Cells , Drug Delivery Systems/methods , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Particle Size , Biological Availability , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects
8.
Appl Environ Microbiol ; 90(4): e0000724, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38501861

ABSTRACT

With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.


Subject(s)
Equol , Isoflavones , Animals , Humans , Mice , Rats , Swine , Equol/genetics , Equol/metabolism , Racemases and Epimerases , Chickens/metabolism , Isoflavones/metabolism , Oxidoreductases/metabolism
9.
Adv Radiat Oncol ; 9(3): 101405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304111

ABSTRACT

Purpose: Online adaptive radiation therapy (OART) uses daily imaging to identify changes in the patient's anatomy and generate a new treatment plan adapted to these changes for each fraction. The aim of this study was to determine the intrafraction motion and planning target volume (PTV) margins required for an OART workflow on the Varian Ethos system. Methods and Materials: Sixty-five fractions from 13 previously treated OART patients were analyzed for this retrospective study. The prostate and seminal vesicles were contoured by a radiation oncologist on 2 cone beam computed tomography scans (CBCT) for each fraction, the initial CBCT at the start of the treatment session, and the verification CBCT immediately before beam-on. In part 1 of the study, PTVs of different sizes were defined on the initial CBCT, and the geometric overlap with the clinical target volume (CTV) on the verification CBCT was used to determine the optimal OART margin. This was performed with and without a patient realignment shift by registering the verification CBCT to the initial CBCT. In part 2 of the study, the margins determined in part 1 were used for simulated Ethos OART treatments on all 65 fractions. The resultant coverage to the CTV on the verification CBCT, was compared with an image guided radiation therapy (IGRT) workflow with 7-mm margins. Results: Part 1 of the study found, if a verification CBCT and shift is performed, a 4-mm margin on the prostate and 5 mm on the seminal vesicles resulted in 95% of the CTV covered by the PTV in >90% of fractions, and 98% of the CTV covered by the PTV in >80% of fractions. Part 2 of the study found when these margins were used in an Ethos OART workflow, they resulted in CTV coverage that was superior to an IGRT workflow with 7-mm margins. Conclusions: A 4mm prostate margin and 5-mm seminal vesicles margin in an OART workflow with verification imaging are adequate to ensure coverage on the Varian Ethos system. Larger margins may be required if using an OART workflow without verification imaging.

10.
Environ Pollut ; 344: 123360, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38228260

ABSTRACT

Remediating vanadium (V) polluted soil has garnered widespread attention over the past decade. Yet, few research projects have investigated the stabilization of soil V using modified biochar, so the effects and interacting mechanisms between soil properties and modified biochar for V immobilization and stabilization remain unclear. Hence, this gap is addressed by determining the leaching behavior and mechanisms of soil V on different dosages of phosphoric acid (H3PO4) impregnated biochar (MLBC, 0.5%-4%). The applicability and durability in soil V immobilization was investigated under acid precipitation. The MLBC effect on V bioavailability and mobility was assessed first by CaCl2, Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) extractions in different periods. The V concentrations significantly reduced in CaCl2, TCLP, and SPLP extract with MLBC at each dosage (30 d), while slight to significant increase in SPLP and TCLP extract V was recorded in a long-term incubation (90 d). Column leaching test further demonstrated the high durability of 4% MLBC in V stabilization under continuous acid exposure. Compared to the control (no-biochar), the accumulated V content in the leaching solution significantly decreased in MLBC-amended soil. Acid soluble fraction of V showed significant negative correlation with both soil organic matter (SOM) and available P, which was positively correlated with pH, suggested that pH, available P and SOM were key factors affecting the bioavailability of V in soil. Moreover, combining with the characterization results of MLBC and amended soil, the results revealed that H3PO4 modified biochar played a vital role on V immobilization and soil improvement by forming electrostatic adsorption, ion exchange, redox reaction or complexation with the increase of functional groups. These revealed an efficient and steady development of soil quality and treatment for soil V contamination, under MLBC operation to soil polluted with exogenous V.


Subject(s)
Charcoal , Phosphoric Acids , Soil , Vanadium , Soil/chemistry , Biological Availability , Calcium Chloride
11.
Plant Cell Rep ; 43(1): 24, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150036

ABSTRACT

KEY MESSAGE: Cold-tolerant QTL qCSS12-regulated 14 hub genes are involved in the chloroplastic biological processes and in the protein synthesis and degradation processes in japonica rice. Low temperature is a main constraint factor for rice growth and production. To better understand the regulatory mechanisms underlying the cold tolerance phenotype in rice, here, we selected a cold-sensitive nearly isogenic line (NIL) NIL(qcss12) as materials to identify hub genes that are mediated by the cold-tolerant locus qCSS12 through weighted gene co-expression network analysis (WGCNA). Fourteen cold-responsive genes were identified, of which, 6 are involved in regulating biological processes in chloroplasts, including the reported EF-Tu, Prk, and ChlD, and 8 are involved in the protein synthesis and degradation processes. Differential expression of these genes between NIL(qcss12) and its controls under cold stress may be responsible for qCSS12-mediated cold tolerance in japonica rice. Moreover, natural variations in 12 of these hub genes are highly correlated with the cold tolerance divergence in two rice subspecies. The results provide deep insights into a better understanding of the molecular basis of cold adaptation in rice and provide a theoretical basis for molecular breeding.


Subject(s)
Oryza , Oryza/genetics , Chloroplasts , Cold Temperature , Cold-Shock Response/genetics , DNA Shuffling
12.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38031336

ABSTRACT

The gut microbiota consists of a vast and diverse assemblage of microorganisms that play a pivotal role in maintaining host health. Nevertheless, a significant portion of the human gut microbiota remains uncultivated. Plasmids, a type of MGE, assume a critical function in the biological evolution and adaptation of bacteria to varying environments. To investigate the plasmids present within the gut microbiota community, we used the transposon-aided capture method (TRACA) to explore plasmids derived from the gut microbiota. In this study, fecal samples were collected from two healthy human volunteers and subsequently subjected to the TRACA method for plasmid isolation. Then, the complete sequence of the plasmids was obtained using the genome walking method, and sequence identity was also analyzed. A total of 15 plasmids were isolated. At last, 13 plasmids were successfully sequenced, of which 12 plasmids were highly identical to the plasmids in the National Center for Biotechnology Information (NCBI) database and were all small plasmids. Furthermore, a putative novel plasmid, named pMRPHD, was isolated, which had mobilized elements (oriT and oriV) and a potential type II restriction-modification (R-M) system encoded by DNA cytosine methyltransferase and type II restriction enzyme (Ban I), whose specific functions and applications warrant further exploration.


Subject(s)
Bacteria , Humans , Plasmids/genetics , Bacteria/genetics
13.
Front Oncol ; 13: 1264723, 2023.
Article in English | MEDLINE | ID: mdl-37941553

ABSTRACT

Background: Follicular lymphoma (FL) is characterized by an incurable course that frequently necessitates multiple lines of treatment. While a range of new approaches have broadened therapeutic options for patients in later lines, data regarding treatment patterns and outcomes of Chinese patients with relapsed/refractory(R/R) FL was scarcely reported. Methods: This retrospective single-center study included patients diagnosed with FL grades 1-3a at our institution between January 2002 and December 2019. Endpoints of interest were analyzed according to lines and types of interventions. The endpoints mainly included overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results: The study enrolled 566 biopsy-proven patients. Among them, 544 patients initiated the first line of treatment, followed by 240 initiating the second line, 146 initiating the third line, 88 initiating the fourth line, 47 initiating the fifth line, and 28 initiating the sixth line. In terms of treatment patterns, anti-CD20 chemotherapy was a major modality in the first and second lines. However, for patients in the third line and subsequent lines, treatment approaches were diverse, and participation in clinical trials for new medications was common, which correlated with a survival benefit. The study also revealed that clinical indicators (such as ORR, PFS, and OS) gradually decreased with each subsequent line of treatment. The ORR at the first line was 86.6%, but decreased to 48.6% at the third line and 40.4% at the sixth line, respectively. Similarly, median OS and PFS decreased to 88.8 and 7.1 months at the third line and further reduced to 21.7 and 2.8 months at the sixth line, respectively. A total of 133 patients developed progression within 24 months from the initiation of first line anti-CD20 chemotherapy (POD24), and these patients exhibited poorer response rates and outcomes in subsequent lines of therapycompared to the non-POD24 group. Conclusion: This study revealed the clinical routine practices and prognosis of R/R FL patients within the Chinese population. It underscored the unmet need for optimal strategies to improve survival and also served as a benchmark for future trials.

14.
Nat Commun ; 14(1): 7865, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030602

ABSTRACT

ß-Arrestins (ßarrs) are functionally versatile proteins that play critical roles in the G-protein-coupled receptor (GPCR) signaling pathways. While it is well established that the phosphorylated receptor tail plays a central role in ßarr activation, emerging evidence highlights the contribution from membrane lipids. However, detailed molecular mechanisms of ßarr activation by different binding partners remain elusive. In this work, we present a comprehensive study of the structural changes in critical regions of ßarr1 during activation using 19F NMR spectroscopy. We show that phosphopeptides derived from different classes of GPCRs display different ßarr1 activation abilities, whereas binding of the membrane phosphoinositide PIP2 stabilizes a distinct partially activated conformational state. Our results further unveil a sparsely-populated activation intermediate as well as complex cross-talks between different binding partners, implying a highly multifaceted conformational energy landscape of ßarr1 that can be intricately modulated during signaling.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , beta-Arrestins/metabolism , Signal Transduction/physiology , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/metabolism , Phosphorylation
15.
J Med Chem ; 66(21): 15006-15024, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37856840

ABSTRACT

Preclinical and clinical studies have demonstrated the synergistic effect of microtubule-targeting agents in combination with Janus kinase 2 (JAK2) inhibitors, prompting the development of single agents with enhanced therapeutic efficacy by dually inhibiting tubulin polymerization and JAK2. Herein, we designed and synthesized a series of substituted 2-amino[1,2,4]triazolopyrimidines and related heterocycles as dual inhibitors for tubulin polymerization and JAK2. Most of these compounds exhibited potent antiproliferative activity against the selected cancer cells, with compound 7g being the most active. This compound effectively inhibits both tubulin assembly and JAK2 activity. Furthermore, phosphorylated compound 7g (i.e., compound 7g-P) could efficiently convert to compound 7g in vivo. Compound 7g, whether it was administered directly or in the form of a phosphorylated prodrug (i.e., compound 7g-P), significantly inhibited the growth of A549 xenografts in nude mice. The present findings strongly suggest that compound 7g represents a promising chemotherapeutic agent with high antitumor efficacy.


Subject(s)
Antineoplastic Agents , Tubulin , Animals , Mice , Humans , Tubulin/metabolism , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Polymerization , Janus Kinase 2 , Mice, Nude , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Microtubules
16.
Small ; 19(42): e2302100, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37330647

ABSTRACT

Fabrication of transition-metal catalytic materials is regarded as a promising strategy for developing high-performance sodium-selenium (Na-Se) batteries. However, more systematic explorations are further demanded to find out how their bonding interactions and electronic structures can affect the Na storage process. This study finds that lattice-distorted nickel (Ni) structure can form different bonding structures with Na2 Se4 , providing high activity to catalyze the electrochemical reactions in Na-Se batteries. Using this Ni structure to prepare electrode (Se@NiSe2 /Ni/CTs) can realize rapid charge transfer and high cycle stability of the battery. The electrode exhibits high storage performance of Na+ ; i.e., 345 mAh g⁻1 at 1 C after 400 cycles, and 286.4 mAh g⁻1 at 10 C in rate performance test. Further results reveal the existence of a regulated electronic structure with upshifts of the d-band center in the distorted Ni structure. This regulation changes the interaction between Ni and Na2 Se4 to form a Ni3 -Se tetrahedral bonding structure. This bonding structure can provide higher adsorption energy of Ni to Na2 Se4 to facilitate the redox reaction of Na2 Se4 during the electrochemical process. This study can inspire the design of bonding structure with high performance in conversion-reaction-based batteries.

17.
Plant J ; 116(1): 173-186, 2023 10.
Article in English | MEDLINE | ID: mdl-37366219

ABSTRACT

Plants employ various molecular mechanisms to maintain primary root elongation upon salt stress. Identification of key functional genes, therein, is important for improving crop salt tolerance. Through analyzing natural variation of the primary root length of Arabidopsis natural population under salt stress, we identified NIGT1.4, encoding an MYB transcription factor, as a novel contributor to maintained root growth under salt stress. Using both T-DNA knockout and functional complementation, NIGT1.4 was confirmed to have a role in promoting primary root growth in response to salt stress. The expression of NIGT1.4 in the root was shown induced by NaCl treatments in an ABA-dependent manner. SnRK2.2 and 2.3 were shown to interact with and phosphorylate NIGT1.4 individually. The growth of the primary root of snrk2.2/2.3/2.6 triple mutant was shown sensitive to salt stress, which was similar to nigt1.4 plants. Using DNA affinity purification sequencing, ERF1, a known positive regulator for primary root elongation and salt tolerance, was identified as a target gene for NIGT1.4. The transcriptional induction of ERF1 by salt stress was shown absent in nigt1.4 background. NIGT1.4 was also confirmed to bind to the promoter region of ERF1 by yeast one-hybrid experiment and to induce the expression of ERF1 by dual-luciferase analysis. All data support the notion that salt- and ABA-elicited NIGT1.4 induces the expression of ERF1 to regulate downstream functional genes that contribute to maintained primary root elongation. NIGT1.4-ERF1, therefore, acts as a signaling node linking regulators for stress resilience and root growth, providing new insights for breeding salt-tolerant crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics
18.
AMIA Jt Summits Transl Sci Proc ; 2023: 505-514, 2023.
Article in English | MEDLINE | ID: mdl-37350877

ABSTRACT

Hormonal therapy is an important adjuvant treatment for breast cancer patients, but medication discontinuation of such therapy is not uncommon. The goal of this paper is to conduct research on the modeling of clinic communications, which have shown value in understanding medication discontinuation, to predict the discontinuation of hormonal therapy medications. Notably, we leveraged the Hypergraph Neural Network to capture the hidden connections of patients that were inferred from clinical communications. Combining the content of clinical communications as well as the demographics, insurance, and cancer stage information, our model achieved an AUC of 67.9%, which significantly outperformed other baselines such as Graph Convolutional Network (65.3%), Random Forest (62.7%), and Support Vector Machine (62.8%). Our study suggested that incorporating the hidden patient connections encoded in clinical communications into prediction models could boost their performance. Future research would consider combining structured medical records and clinical communications to better predict medication discontinuation.

19.
iScience ; 26(6): 106792, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37235055

ABSTRACT

Advancements in spatial transcriptomics (ST) have enabled an in-depth understanding of complex tissues by quantifying gene expression at spatially localized spots. Several notable clustering methods have been introduced to utilize both spatial and transcriptional information in the analysis of ST datasets. However, data quality across different ST sequencing techniques and types of datasets influence the performance of different methods and benchmarks. To harness spatial context and transcriptional profile in ST data, we developed a graph-based, multi-stage framework for robust clustering, called ADEPT. To control and stabilize data quality, ADEPT relies on a graph autoencoder backbone and performs an iterative clustering on imputed, differentially expressed genes-based matrices to minimize the variance of clustering results. ADEPT outperformed other popular methods on ST data generated by different platforms across analyses such as spatial domain identification, visualization, spatial trajectory inference, and data denoising.

20.
Nat Commun ; 14(1): 2005, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037825

ABSTRACT

Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The ß2 adrenergic receptor's (ß2AR) 71 amino acid CT is a substrate for GPCR kinases and binds ß-arrestins to regulate signaling. Here we show that the ß2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking ß-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged ß2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , beta-Arrestins/metabolism , Cell Line , Receptors, G-Protein-Coupled/metabolism , Receptors, Adrenergic/metabolism , Receptors, Adrenergic, beta-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...