Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37683639

ABSTRACT

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Subject(s)
B7-H1 Antigen , MARVEL Domain-Containing Proteins , Myelin Proteins , Neoplasms , T-Lymphocytes , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Immunity , Immunotherapy , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes/immunology , Myelin Proteins/metabolism , MARVEL Domain-Containing Proteins/metabolism
3.
Sci Adv ; 8(19): eabh2332, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544574

ABSTRACT

Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.

4.
Cancer Lett ; 519: 237-249, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34324862

ABSTRACT

Melanoma is a highly metastatic cancer that requires effective and targeted curative therapy. Annexin A10 (ANXA10), a member of the annexin family, is a calcium- and phospholipid-binding protein. Considerable evidence indicates that ANXA10 is involved in tumour progression, but little is known about its role in melanoma development. In this study, we find that ANXA10 expression is significantly upregulated, and correlates with melanoma progression. ANXA10 knockout profoundly reduces cell migration and the metastatic activity of melanoma. In addition, ANXA10 knockout induces the N- to E-cadherin switch by upregulating SMAD6, an inhibitory SMAD in the TGF-ß/SMAD pathway. The negative regulation of SMAD6 by ANXA10 is dependent on PKD1. ANXA10 interacts with PKD1 and inhibits E3 ligase TRIM41-targeted PKD1 degradation. In B16F10 melanoma cells, protein levels of ANXA10 and PKD1 are inversely correlated with SMAD6 level, but correlated with cell migration. Interestingly, ANXA10 and SMAD6 levels are inversely correlated in clinical samples of melanoma progression. Our findings suggest that the ANXA10-PKD1-SMAD6 axis is a new target for therapeutic strategies against melanoma metastasis.


Subject(s)
Annexins/metabolism , Melanoma/metabolism , Melanoma/pathology , TRPP Cation Channels/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cadherins/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/physiology , Disease Progression , HEK293 Cells , HaCaT Cells , Humans , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
5.
Signal Transduct Target Ther ; 6(1): 235, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34131110

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and relapsing disorder for many people associated with poor health. Although there are some clinical drugs for IBD treatment, the development of effective therapeutics on IBD patients has always been necessary. Here, we show that externalized phosphatidylserine (PS) is observed on the surface of colonic capillaries. Annexin A5 (ANXA5) with high affinity for PS has a good targeting to the colon and effectively alleviates experimental colitis. In contrast, ANXA5 mutant (A5m) lacking the PS-binding ability, has no accumulation in the colon and no therapeutic effects on colitis. Mechanistic investigations indicate that ANXA5 reduces the inflammatory cell infiltration by inhibiting endothelial cell activation dependent on PS-binding ability. With the increasing of PS exposure on activated HUVECs (human umbilical vein endothelial cells), ANXA5 binding induces the internalization of TLR4 via PS-dependent endocytosis. We provide new insights on the molecular mechanism of ANXA5 for its anti-inflammatory effect. Our data suggest that PS-externalization is a potential target of ANXA5 aiming at targeted drug delivery (TDD) for IBD treatment.


Subject(s)
Capillaries/metabolism , Colon/blood supply , Colon/metabolism , Inflammatory Bowel Diseases/metabolism , Phosphatidylserines/metabolism , Animals , Annexin A5/metabolism , Capillaries/pathology , Colon/pathology , Female , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/therapy , Mice , Mice, Inbred BALB C
6.
J Biol Chem ; 295(41): 14214-14221, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32796034

ABSTRACT

T-cell activation is a critical part of the adaptive immune system, enabling responses to foreign cells and external stimulus. In this process, T-cell antigen receptor (TCR) activation stimulates translocation of the downstream kinase PKCθ to the membrane, leading to NF-κB activation and thus transcription of relevant genes. However, the details of how PKCθ is recruited to the membrane remain enigmatic. It is known that annexin A5 (ANXA5), a calcium-dependent membrane-binding protein, has been reported to mediate PKCδ activation by interaction with PKCδ, a homologue of PKCθ, which implicates a potential role of ANXA5 involved in PKCθ signaling. Here we demonstrate that ANXA5 does play a critical role in the recruitment of PKCθ to the membrane during T-cell activation. ANXA5 knockout in Jurkat T cells substantially inhibited the membrane translocation of PKCθ upon TCR engagement and blocked the recruitment of CARMA1-BCL10-MALT1 signalosome, which provides a platform for the catalytic activation of IKKs and subsequent activation of canonical NF-κB signaling in activated T cells. As a result, NF-κB activation was impaired in ANXA5-KO T cells. T-cell activation was also suppressed by ANAX5 knockdown in primary T cells. These results demonstrated a novel role of ANXA5 in PKC translocation and PKC signaling during T-cell activation.


Subject(s)
Annexin A5/immunology , Lymphocyte Activation , Protein Kinase C-theta/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Annexin A5/genetics , Humans , Jurkat Cells , Mice , Protein Kinase C-theta/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
7.
Front Immunol ; 9: 2038, 2018.
Article in English | MEDLINE | ID: mdl-30250469

ABSTRACT

Intestinal intraepithelial lymphocytes (IELs) play a critical role in mucosal immune system, which differ from thymus-derived cells and develop locally in gut. Although the development of IELs has been studied in some detail, the molecular cues controlling their local development remain unclear. Here, we demonstrate that FADD, a classic adaptor protein required for death-receptor-induced apoptosis, is a critical regulator of the intestinal IEL development. The mice with a dominant negative mutant of FADD (FADD-DN) display an abnormal development of intestinal IELs with a marked reduction in the numbers of CD8αα+TCRγδ+ T cells. As a precursor for CD8αα+ development, lamina propria lymphocytes in lin-negative expression (lin- LPLs) were analyzed and the massive accumulation of IL-7R-lin- LPLs was observed in FADD-DN mice. As IL-7R is one of Notch1-target genes, we further observed that the level of Notch1 expression was lower in Lin- LPLs from FADD-DN mice compared with normal mice. The downregulation of Notch1 expression induced by FADD-DN overexpression was also confirmed in Jurkat T cells. Considering that IL-7 and its receptor IL7-R play a differentiation inducing role in the development of intestinal IELs, the influence of FADD via its DD domain on Notch1 expression might be a possible molecular signal involved in the early IELs development. In addition, loss of γδ T-IELs in FADD-DN mice aggravates DSS-induced colitis, suggesting that FADD is a relevant contribution to the field of mucosal immunology and intestinal homeostasis.


Subject(s)
Colitis/immunology , Fas-Associated Death Domain Protein/metabolism , Intestinal Mucosa/immunology , T-Lymphocytes/immunology , Animals , CD8 Antigens/metabolism , Cell Differentiation , Colitis/chemically induced , Dextran Sulfate , Fas-Associated Death Domain Protein/genetics , Humans , Immunity, Mucosal , Jurkat Cells , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...