Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Hellenic J Cardiol ; 75: 26-31, 2024.
Article in English | MEDLINE | ID: mdl-37263540

ABSTRACT

OBJECTIVE: Daytime napping has been reported to have a potential association with an increased risk of cardiovascular diseases (CVDs) in several cohort studies, but the causal effects are unclear. In this study, we aimed to investigate the relationship between daytime napping and CVDs, as well as to validate causality in this relationship by Mendelian randomization (MR). METHODS: A two-sample MR method was used to evaluate the causal effect of daytime napping on CVDs. The exposure of daytime napping was extracted from publicly available genome-wide association studies (GWASs) in the UK Biobank, and the outcomes of 14 CVDs were obtained from the FinnGen consortium. A total of 49 single-nucleotide polymorphisms (SNPs) were used as the instrumental variables. The effect estimates were calculated by using the inverse-variance weighted method. RESULTS: The MR analyses showed that genetically predicted daytime napping was associated with an increased risk of five CVDs, including heart failure (odds ratio (OR): 1.71, 95% CI: 1.19-2.44, p = 0.003), hypertension (OR: 1.51, 95% CI: 1.05-2.16, p = 0.026), atrial fibrillation (OR: 1.71, 95% CI: 1.02-2.88, p = 0.042), cardiac arrythmias (OR: 1.47, 95% CI: 1.47, 95% CI: 1.01-2.13, p = 0.042) and coronary atherosclerosis (OR: 1.77, 95% CI: 1.17-2.68, p = 0.006). No significant influence was observed for other CVDs. CONCLUSION: This two-sample MR analysis suggested that daytime napping was causally associated with an increased risk of heart failure, hypertension, atrial fibrillation, cardiac arrythmias and coronary atherosclerosis.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Coronary Artery Disease , Heart Failure , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypertension/epidemiology , Hypertension/genetics , Polymorphism, Single Nucleotide
2.
Opt Lett ; 48(16): 4372-4375, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582035

ABSTRACT

Monolayer transition metal dichalcogenides (TMDCs) with direct bandgaps are considered promising candidates for building light-emitting diodes (LEDs). One crucial indicator of their performance is the brightness of electroluminescence (EL). In this study, we fabricate WS2-based LEDs that make full use of the assistance of effective transient-mode charge injection. By introducing self-assembled silver nanoparticles (NPs) on top of the LED, the extraction efficiency is significantly improved, with a 2.9-fold EL enhancement observed in the experiment. Full-wave simulations further confirm that the improvement comes from the scattering capability of silver NPs, with results qualitatively fitting the experiment. This approach, with its compatibility with van der Waals heterostructures, can be further promoted to enhance the brightness of 2D monolayer TMDC-based LEDs.

3.
Biomed Res Int ; 2023: 1235552, 2023.
Article in English | MEDLINE | ID: mdl-36726841

ABSTRACT

Vascular dementia (VaD) is the second most prevalent dementia, which is attributable to neurovascular dysfunction. Currently, no approved pharmaceuticals are available. Taohong Siwu decoction (TSD) is a traditional Chinese medicine prescription with powerful antiapoptosis and anti-inflammatory properties. In this study, a network pharmacology approach together with molecular docking validation was used to explore the probable mechanism of action of TSD against VaD. A total of 44 active components, 202 potential targets of components, and 3,613 VaD-related targets including 161 intersecting were obtained. The potential chemical components including kaempferol, baicalein, beta-carotene, luteolin, quercetin, and beta-sitosterol involved in the inflammatory response, oxidative stress, and apoptosis might have potential therapeutic effects on the treatment of VaD. The potential core targets including AKT1, CASP3, IL1ß, JUN, and TP53 associated with cell apoptosis and inflammatory might account for the essential therapeutic effects of TSD in VaD. The results indicated that TSD protected against VaD through multicomponent and multitarget modes. Though the detailed mechanism of action of various active ingredients needs to be further illustrated, TSD still showed a promising therapeutic agent for VaD due to its biological activity.


Subject(s)
Dementia, Vascular , Drugs, Chinese Herbal , Humans , Molecular Docking Simulation , Dementia, Vascular/drug therapy , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional/methods
5.
Am Heart J ; 244: 66-76, 2022 02.
Article in English | MEDLINE | ID: mdl-34756894

ABSTRACT

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias. Biventricular involvement in ARVC may lead to heart failure. This study aimed to investigate the role of plasma biomarkers soluble (s)ST2, Galectin-3 (Gal-3) and GDF-15 in predicting biventricular involvement and adverse outcomes in ARVC. METHODS AND RESULTS: ARVC patients from 2 independent cohorts, were studied. The Bejing (Chinese) cohort (n = 108) was the discovery cohort, whereas the Zurich (Swiss) cohort (n = 47) served as validation. All patients had a definite ARVC diagnosis at time of blood withdrawal. Biomarkers were independently correlated with NT-proBNP and left ventricular (LV)-function. ARVC patients with LV involvement had higher levels of sST2 and GDF-15 as compared to controls and patients with isolated right ventricle (RV) involvement. sST2 and GDF-15 were significantly correlated with late gadolinium enhancement in CMR and with adverse heart failure outcomes. Gal-3 was elevated in ARVC patients with and without LV involvement. The combined use of the three biomarkers (sST2, GDF-15 and NT-proBNP) showed the best performance in predicting LV involvement in both cohorts. Plasma drawn from the coronary arteries and coronary sinus indicated a transmyocardial elevation of sST2, but no transmyocardial gradient of GDF-15. After heart transplantation, both sST2 and GDF-15 returned to near-normal levels. CONCLUSION: Our study showed that sST2 and GDF-15 may predict biventricular involvement in ARVC. The combined use of sST2, GDF-15 and NT-proBNP showed the best prediction of biventricular involvement in ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Biomarkers , Contrast Media , Gadolinium , Heart Ventricles/diagnostic imaging , Humans
6.
J Am Heart Assoc ; 10(22): e021825, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34719239

ABSTRACT

Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common postoperative complication following cardiac surgery. Currently, there are no reliable methods for the early prediction of CSA-AKI in hospitalized patients. This study developed and evaluated the diagnostic use of metabolomics-based biomarkers in patients with CSA-AKI. Methods and Results A total of 214 individuals (122 patients with acute kidney injury [AKI], 92 patients without AKI as controls) were enrolled in this study. Plasma samples were analyzed by liquid chromatography tandem mass spectrometry using untargeted and targeted metabolomic approaches. Time-dependent effects of selected metabolites were investigated in an AKI swine model. Multiple machine learning algorithms were used to identify plasma metabolites positively associated with CSA-AKI. Metabolomic analyses from plasma samples taken within 24 hours following cardiac surgery were useful for distinguishing patients with AKI from controls without AKI. Gluconic acid, fumaric acid, and pseudouridine were significantly upregulated in patients with AKI. A random forest model constructed with selected clinical parameters and metabolites exhibited excellent discriminative ability (area under curve, 0.939; 95% CI, 0.879-0.998). In the AKI swine model, plasma levels of the 3 discriminating metabolites increased in a time-dependent manner (R2, 0.480-0.945). Use of this AKI predictive model was then confirmed in the validation cohort (area under curve, 0.972; 95% CI, 0.947-0.996). The predictive model remained robust when tested in a subset of patients with early-stage AKI in the validation cohort (area under curve, 0.943; 95% CI, 0.883-1.000). Conclusions High-resolution metabolomics is sufficiently powerful for developing novel biomarkers. Plasma levels of 3 metabolites were useful for the early identification of CSA-AKI.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Animals , Biomarkers , Cardiac Surgical Procedures/adverse effects , Humans , Postoperative Complications/diagnosis , Risk Assessment , Swine
7.
Phys Chem Chem Phys ; 23(14): 8222-8235, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33875990

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit enormous potential in the field of optoelectronics. The high performance of TMD materials and optoelectronic devices significantly depends on processes involved in photoelectric conversion, including photo-excitation, relaxation, transportation, and recombination. Remarkably, inevitable defects in materials prolong or shorten the characteristic time of these processes and even bring about new photoelectric conversion channels, namely, the defect-related relaxation pathways of photoexcited carriers tailor the performance of photoelectric applications. In recent years, there have been numerous investigations in exploring the variant transient signals caused by defects in TMDs utilizing ultrafast spectroscopies. They have the capability in providing an accurate and overall representation of ultrafast processes owing to the subtle temporal resolution. The defect-related mechanisms occurring in different time scales (from femtosecond (fs) to microsecond (µs)) play influential roles throughout the relaxation process of photoexcited species. Herein, we review the defect-related relaxation mechanisms of photoexcited species in TMDs according to the time scale utilizing ultrafast spectroscopy techniques. By interpreting and summarizing the defect-related transient signals, we furnish the direction in material design and performance optimization.

8.
ACS Appl Mater Interfaces ; 13(7): 8518-8527, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33569955

ABSTRACT

Platinum dichalcogenide (PtX2), an emergent group-10 transition metal dichalcogenide (TMD) has shown great potential in infrared photonic and optoelectronic applications due to its layer-dependent electronic structure with potentially suitable bandgap. However, a scalable synthesis of PtSe2 and PtTe2 atomic layers with controlled thickness still represents a major challenge in this field because of the strong interlayer interactions. Herein, we develop a facile cathodic exfoliation approach for the synthesis of solution-processable high-quality PtSe2 and PtTe2 atomic layers for high-performance infrared (IR) photodetection. As-exfoliated PtSe2 and PtTe2 bilayer exhibit an excellent photoresponsivity of 72 and 1620 mA W-1 at zero gate voltage under a 1540 nm laser illumination, respectively, approximately several orders of magnitude higher than that of the majority of IR photodetectors based on graphene, TMDs, and black phosphorus. In addition, our PtSe2 and PtTe2 bilayer device also shows a decent specific detectivity of beyond 109 Jones with remarkable air-stability (>several months), outperforming the mechanically exfoliated counterparts under the laser illumination with a similar wavelength. Moreover, a high yield of PtSe2 and PtTe2 atomic layers dispersed in solution also allows for a facile fabrication of air-stable wafer-scale IR photodetector. This work demonstrates a new route for the synthesis of solution-processable layered materials with the narrow bandgap for the infrared optoelectronic applications.

9.
Front Physiol ; 11: 587204, 2020.
Article in English | MEDLINE | ID: mdl-33240107

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) occurs in about 30% of patients with cardiac surgery, but the pathogenesis of cardiac surgery-associated acute kidney injury (CSA-AKI) remains unclear and there are no predictive biomarkers or diagnostic criteria specific for CSA-AKI beyond the general clinical variables for AKI like serum creatinine (SCr). METHODS AND RESULTS: We measured the plasma levels of 48 cytokines within 24 h after cardiac surgery in a total of 306 adult patients including 204 with and 102 without AKI, and then evaluated the diagnostic efficacy of these cytokines for the development of CSA-AKI via ANOVA and Pearson correlation analysis. Among these 48 cytokines, 20 of them were significantly different in the AKI patients compared with the non-AKI patients. In particularly, 13 cytokines displayed tremendous changes with the P < 1E-5. Moreover, 10 of the 48 cytokines in the plasma were significantly different among the patients with different stages of AKI. Specifically, 6 cytokines exhibited immense differences with the P < 1E-5. Additionally, 7 of the 48 cytokines have the correlation coefficient of r > 0.5 with the postoperative changes of SCr after cardiac surgery. CONCLUSION: Taken all the results together, IFN-γ and SCGF-ß were the most relevant two cytokines that were not only remarkably changed in adult CSA-AKI patients during the first 24 h after cardiac surgery, but also significantly correlated with the postoperative changes of SCr after cardiac surgery. Therefore, IFN-γ and SCGF-ß might be novel predictive plasma biomarker, as well as potential therapeutic targets specific for adult CSA-AKI.

10.
Sci Transl Med ; 12(530)2020 02 12.
Article in English | MEDLINE | ID: mdl-32051229

ABSTRACT

Sudden death could be the first symptom of patients with arrhythmogenic cardiomyopathy (AC), a disease for which clinical indicators predicting adverse progression remain lacking. Recent findings suggest that metabolic dysregulation is present in AC. We performed this study to identify metabolic indicators that predicted major adverse cardiac events (MACEs) in patients with AC and their relatives. Comparing explanted hearts from patients with AC and healthy donors, we identified deregulated metabolic pathways using quantitative proteomics. Right ventricles (RVs) from patients with AC displayed elevated ketone metabolic enzymes, OXCT1 and HMGCS2, suggesting higher ketone metabolism in AC RVs. Analysis of matched coronary artery and sinus plasma suggested potential ketone body synthesis at early-stage AC, which was validated using patient-derived induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in vitro. Targeted metabolomics analysis in RVs from end-stage AC revealed a "burned-out" state, with predominant medium-chain fatty acid rather than ketone body utilization. In an independent validation cohort, 65 probands with mostly non-heart failure manifestations of AC had higher plasma ß-hydroxybutyrate (ß-OHB) than 62 healthy volunteers (P < 0.001). Probands with AC with MACE had higher ß-OHB than those without MACE (P < 0.001). Among 94 relatives of probands, higher plasma ß-OHB distinguished 25 relatives having suspected AC from nonaffected relatives. This study demonstrates that elevated plasma ß-OHB predicts MACE in probands and disease progression in patients with AC and their clinically asymptomatic relatives.


Subject(s)
Cardiomyopathies , Myocytes, Cardiac , 3-Hydroxybutyric Acid , Disease Progression , Heart Ventricles , Humans
11.
Adv Mater ; 31(43): e1903829, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31495984

ABSTRACT

Interfacial charge transfer is a fundamental and crucial process in photoelectric conversion. If charge transfer is not fast enough, carrier harvesting can compromise with competitive relaxation pathways, e.g., cooling, trapping, and recombination. Some of these processes can strongly affect the speed and efficiency of photoelectric conversion. In this work, it is elaborated that plasmon-induced hot-electron transfer (HET) from tungsten suboxide to graphene is a sufficiently fast process to prevent carrier cooling and trapping processes. A fast near-infrared detector empowered by HET is demonstrated, and the response time is three orders of magnitude faster than that based on common band-edge electron transfer. Moreover, HET can overcome the spectral limit of the bandgap of tungsten suboxide (≈2.8 eV) to extent the photoresponse to the communication band of 1550 nm (≈0.8 eV). These results indicate that plasmon-induced HET is a new strategy for implementation of efficient and high-speed photoelectric devices.

12.
Nano Lett ; 19(7): 4641-4650, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31189314

ABSTRACT

We clarify that the chemisorption of oxygen atoms at the edges is a key contributor to the frequently observed edge enhancement and spatial non-uniformities of photoluminescence (PL) in WS2 monolayers. Here we have investigated with momentum- and real-space nanoimaging of the chemical and electronic density inhomogeneity of WS2 flakes. Our finding from a large panoply of techniques together with density functional theory calculation confirms that the oxygen chemisorption leads to the electron accumulation at the edges. This facilitates the trion dominance of PL at the edges of WS2 flakes. Our results highlight and unravel the significance of chemisorbed oxygen at the edges in the PL emission and electronic structure of WS2, providing a viable path to enhance the performance of transition-metal-dichalcogenide-based devices.

13.
Eur Heart J ; 40(21): 1690-1703, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30945739

ABSTRACT

AIMS: Arrhythmogenic cardiomyopathy (AC) shows large heterogeneity in its clinical, genetic, and pathological presentation. This study aims to provide a comprehensive atlas of end-stage AC and illustrate the relationships among clinical characteristics, genotype, and pathological profiles of patients with this disease. METHODS AND RESULTS: We collected 60 explanted AC hearts and performed standard pathology examinations. The clinical characteristics of patients, their genotype and cardiac magnetic resonance imaging findings were assessed along with pathological characteristics. Masson staining of six representative sections of each heart were performed. Digital pathology combined with image segmentation was developed to calculate distribution of myocardium, fibrosis, and adipose tissue. An unsupervised clustering based on fibrofatty distribution containing four subtypes was constructed. Patients in Cluster 1 mainly carried desmosomal mutations (except for desmoplakin) and were subjected to transplantation at early age; this group was consistent with classical 'desmosomal cardiomyopathy'. Cluster 2 mostly had non-desmosomal mutations and showed regional fibrofatty replacement in right ventricle. Patients in Cluster 3 showed parallel progression, and included patients with desmoplakin mutations. Cluster 4 is typical left-dominant AC, although the genetic background of these patients is not yet clear. Multivariate regression analysis revealed precordial QRS voltage as an independent indicator of the residual myocardium of right ventricle, which was validated in predicting death and transplant events in the validation cohort (n = 92). CONCLUSION: This study provides a novel classification of AC with distinct genetic backgrounds indicating different potential pathogenesis. Cluster 1 is distinct in genotype and clinicopathology and can be defined as 'desmosomal cardiomyopathy'. Precordial QRS amplitude is an independent indicator reflecting the right ventricular remodelling, which may be able to predict transplant/death events for AC patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Adult , Arrhythmogenic Right Ventricular Dysplasia/classification , Arrhythmogenic Right Ventricular Dysplasia/epidemiology , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Arrhythmogenic Right Ventricular Dysplasia/surgery , Cohort Studies , Disease Progression , Female , Genotype , Heart Transplantation , Humans , Male , Myocardium/pathology , Young Adult
14.
ACS Appl Mater Interfaces ; 10(43): 37396-37406, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30295453

ABSTRACT

When a vertically stacked heterobilayer comprising of a WSe2 monolayer on a WS2 monolayer is first fabricated, the heterobilayer behaves like two independent monolayers because of the presence of a large interlayer separation. However, after the stacked heterobilayer is subjected to a focused laser treatment, the interlayer separation between the two monolayers becomes progressively reduced which transforms the WS2/WSe2 heterostructure from the noncoupling to the strongly coupling regime. This strong coupling induces the charge transfer between two layers and thus lowers the exciton recombination rate in the individual layer. This changes the optical properties of the heterobilayer from a fluorescence-active species into one where the fluorescence is quenched. The focused laser beam scanning method is therefore able to serve as a localized annealing tool to progressively modulate the interlayer separation and enable the micropatterning of the heterobilayer to achieve distinct regions with different degrees of fluorescence quenching. Systematic studies are carried out to gain an insight into the mechanism involved in the onset of the interlayer coupling in the material. Our method is also successfully extended to a WS2/WS2 homobilayer structure.

15.
Phys Rev Lett ; 119(7): 077402, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949667

ABSTRACT

Using wide spectral range in situ spectroscopic ellipsometry with systematic ultrahigh vacuum annealing and in situ exposure to oxygen, we report the complex dielectric function of MoS_{2} isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92 eV) and B (2.02 eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the band structure during oxygen adsorption and desorption, respectively, as indicated by ab initio density functional theory calculation results. This Letter unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS_{2}.

16.
ACS Nano ; 11(1): 713-720, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28033460

ABSTRACT

We present scanning focused laser beam as a multipurpose tool to engineer the physical and chemical properties of WS2 microflakes. For monolayers, the laser modification integrates oxygen into the WS2 microflake, resulting in ∼9 times enhancement in the intensity of the fluorescence emission. This modification does not cause any morphology change, allowing "micro-encryption" of information that is only observable as fluorescence under excitation. The same focused laser also facilitates on demand thinning down of WS2 multilayers into monolayers, turning them into fluorescence active components. With a scanning focused laser beam, micropatterns are readily created on WS2 multilayers through selective thinning of specific regions on the flake.

17.
Nano Lett ; 16(9): 5559-67, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27479127

ABSTRACT

We report a novel optical property in WS2 monolayer. The monolayer naturally exhibits beautiful in-plane periodical and lateral homojunctions by way of alternate dark and bright band in the fluorescence images of these monolayers. The interface between different fluorescence species within the sample is distinct and sharp. This gives rise to intriguing concentric triangular fluorescence patterns in the monolayer. The novel optical property of this special WS2 monolayer is facilitated by chemical heterogeneity. The photoluminescence of the bright band is dominated by emissions from trion and biexciton while the emission from defect-bound exciton dominates the photoluminescence at the dark band. The discovery of such concentric fluorescence patterns represents a potentially new form of optoelectronic or photonic functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...