Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 71: 103096, 2024 May.
Article in English | MEDLINE | ID: mdl-38387137

ABSTRACT

Oxidative stress in muscles is closely related to the occurrence of insulin resistance, muscle weakness and atrophy, age-related sarcopenia, and cancer. Aldehydes, a primary oxidation intermediate of polyunsaturated fatty acids, have been proven to be an important trigger for oxidative stress. However, the potential role of linoleic acid (LA) as a donor for volatile aldehydes to trigger oxidative stress has not been reported. Here, we reported that excessive dietary LA caused muscle redox imbalance and volatile aldehydes containing hexanal, 2-hexenal, and nonanal were the main metabolites leading to oxidative stress. Importantly, we identified 5-lipoxygenase (5-LOX) as a key enzyme mediating LA peroxidation in crustaceans for the first time. The inhibition of 5-LOX significantly suppressed the content of aldehydes produced by excessive LA. Mechanistically, the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway facilitated the translocation of 5-LOX from the nucleus to the cytoplasm, where 5-LOX oxidized LA, leading to oxidative stress through the generation of aldehydes. This study suggests that 5-LOX is a potential target to prevent the production of harmful aldehydes.


Subject(s)
Arachidonate 5-Lipoxygenase , Linoleic Acid , Linoleic Acid/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Oxidative Stress , Oxidation-Reduction , Muscles/metabolism , Aldehydes/metabolism
2.
Aquac Nutr ; 2022: 7285851, 2022.
Article in English | MEDLINE | ID: mdl-36860449

ABSTRACT

This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.

SELECTION OF CITATIONS
SEARCH DETAIL
...