Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 350: 124030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663511

ABSTRACT

As a widely used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been detected in the environment and humans; however, little is known regarding its male reproductive toxicity. To compare the effects of HFPO-TA on steroid hormone synthesis with PFOA, we exposed Leydig cells (MLTC-1) to non-lethal doses (0.1, 1, and 10 µM) of PFOA and HFPO-TA for 48 h. It was found that the levels of steroid hormones, 17α-hydroxyprogesterone (OHP), androstenedione (ASD), and testosterone (T) were significantly increased in 1 and 10 µM of PFOA and HFPO-TA groups, with greater elevation being observed in the HFPO-TA groups than in the PFOA groups at 10 µM. We further showed that the two rate-limiting steroidogenic genes (Star and Cyp11a1) were up-regulated, while Hsd3b, Cyp17a1, and Hsd17b were down-regulated or unchanged after PFOA/HFPO-TA exposure. Moreover, PFOA exposure significantly up-regulated histone H3K4me1/3 and H3K9me1, while down-regulated H3K4me2 and H3K9me2/3 levels. By contrast, H3K4me2/3 and H3K9me2/3 were enhanced, while H3K4me1 and H3K9me1 were repressed after HFPO-TA treatment. It was further confirmed that H3K4me1/3 were increased and H3K9me2 was decreased in Star and Cyp11a1 promoters by PFOA, while HFPO-TA increased H3K4me2/3 and decreased H3K9me1 in the two gene promoters. Therefore, we propose that low levels of PFOA/HFPO-TA enhance the expression of Star and Cyp11a1 by regulating H3K4 and H3K9 methylation, thus stimulating the production of steroid hormones in MLTC-1 cells. Collectively, HFPO-TA exhibits stronger effects on steroidogenesis compared to PFOA, which may be ascribed to the distinct regulation of histone modifications. These data suggest that HFPO-TA does not appear to be a safer alternative to PFOA on the aspect of male reproductive toxicity.


Subject(s)
Caprylates , Fluorocarbons , Fluorocarbons/toxicity , Caprylates/toxicity , Animals , Male , Histone Code/drug effects , Leydig Cells/drug effects , Leydig Cells/metabolism , Testosterone/metabolism , Histones/metabolism , Mice
2.
Environ Sci Technol ; 58(15): 6475-6486, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578163

ABSTRACT

Arsenic (As) is widely present in the natural environment, and exposure to it can lead to learning and memory impairment. However, the underlying epigenetic mechanisms are still largely unclear. This study aimed to reveal the role of histone modifications in environmental levels of arsenic (sodium arsenite) exposure-induced learning and memory dysfunction in male rats, and the inter/transgenerational effects of paternal arsenic exposure were also investigated. It was found that arsenic exposure impaired the learning and memory ability of F0 rats and down-regulated the expression of cognition-related genes Bdnf, c-Fos, mGlur1, Nmdar1, and Gria2 in the hippocampus. We also observed that inorganic arsenite was methylated to DMA and histone modification-related metabolites were altered, contributing to the dysregulation of H3K4me1/2/3, H3K9me1/2/3, and H3K4ac in rat hippocampus after exposure. Therefore, it is suggested that arsenic methylation and hippocampal metabolism changes attenuated H3K4me1/2/3 and H3K4ac while enhancing H3K9me1/2/3, which repressed the key gene expressions, leading to cognitive impairment in rats exposed to arsenic. In addition, paternal arsenic exposure induced transgenerational effects of learning and memory disorder in F2 male rats through the regulation of H3K4me2 and H3K9me1/2/3, which inhibited c-Fos, mGlur1, and Nmdar1 expression. These results provide novel insights into the molecular mechanism of arsenic-induced neurotoxicity and highlight the risk of neurological deficits in offspring with paternal exposure to arsenic.


Subject(s)
Arsenic , Rats , Animals , Male , Arsenic/toxicity , Histone Code , Hippocampus , Methylation
3.
Environ Int ; 185: 108532, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422876

ABSTRACT

Nanoplastics (NPs) continue to accumulate in global aquatic and terrestrial systems, posing a potential threat to human health through the food chain and/or other pathways. Both in vivo and in vitro studies have confirmed that the liver is one of the main organs targeted for the accumulation of NPs in living organisms. However, whether exposure to NPs induces size-dependent disorders of liver lipid metabolism remains controversial, and the reversibility of NPs-induced hepatotoxicity is largely unknown. In this study, the effects of long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs) on lipid accumulation were investigated in terms of autophagy and lysosomal mechanisms. The findings indicated that hepatic lipid accumulation was more pronounced in mice exposed to 100 nm PS-NPs compared to 500 nm PS-NPs. This effect was effectively alleviated after 50 days of self-recovery for 100 nm and 500 nm PS-NPs exposure. Mechanistically, although PS-NPs exposure activated autophagosome formation through ERK (mitogen-activated protein kinase 1)/mTOR (mechanistic target of rapamycin kinase) signaling pathway, the inhibition of Rab7 (RAB7, member RAS oncogene family), CTSB (cathepsin B), and CTSD (cathepsin D) expression impaired lysosomal function, thereby blocking autophagic flux and contributing to hepatic lipid accumulation. After termination of PS-NPs exposure, lysosomal exocytosis was responsible for the clearance of PS-NPs accumulated in lysosomes. Furthermore, impaired lysosomal function and autophagic flux inhibition were effectively alleviated. This might be the main reason for the alleviation of PS-NPs-induced lipid accumulation after recovery. Collectively, we demonstrate for the first time that lysosomes play a dual role in the persistence and reversibility of hepatotoxicity induced by environmental relevant doses of NPs, which provide novel evidence for the prevention and intervention of liver injury associated with nanoplastics exposure.


Subject(s)
Chemical and Drug Induced Liver Injury , Nanoparticles , Water Pollutants, Chemical , Humans , Animals , Mice , Microplastics , Polystyrenes/toxicity , Lysosomes , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...