Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-483948

ABSTRACT

Severe injuries following viral infection cause lung epithelial destruction with the presence of ectopic basal progenitor cells (EBCs), although the exact function of EBCs remains controversial. We and others previously showed the presence of ectopic tuft cells in the disrupted alveolar region following severe influenza infection. Here, we further revealed that the ectopic tuft cells are derived from EBCs. This process is amplified by Wnt signaling inhibition but suppressed by Notch inhibition. Further analysis revealed that p63-CreER labeled population de novo arising during regeneration includes alveolar epithelial cells when Tamoxifen was administrated after viral infection. The generation of the p63-CreER labeled alveolar cells is independent of tuft cells, demonstrating segregated differentiation paths of EBCs in lung repair. EBCs and ectopic tuft cells can also be found in the lung parenchyma post SARS-CoV-2 infection, suggesting a similar response to severe injuries in humans.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-440833

ABSTRACT

Summary/AbstractFACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated at lysine 674 (K674) of middle domain (MD), which involves TIP60 histone acetyltransferase. Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (EZH2, HDAC1) and affects histone marks (H3K9me3, H3K27me3 and H3ac). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, CBL0137 is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that CBL0137 also causes the remarkable activation of IFN signaling in natural killer (NK) cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of CBL0137 to treat viral infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...