Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168908, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013098

ABSTRACT

Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.


Subject(s)
Anti-Bacterial Agents , Sewage , Sewage/microbiology , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Gene Transfer, Horizontal , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Virulence Factors/genetics
2.
Chemosphere ; 340: 139905, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611759

ABSTRACT

Vibrio parahaemolyticus is a common pathogen, and has emerged with multiple antimicrobial resistance (AMR). However, few studies have conducted large-scale investigations of AMR and virulence trends of V. parahaemolyticus worldwide. This study longitudinally monitored antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) trends of 1540 V. parahaemolyticus isolates isolated from 1951 to 2021. The number of ARGs in V. parahaemolyticus isolates distinctly increased over the years (P = 5.9e-10), while the number of VFGs decreased significantly (P < 2.2e-16). However, the number of VFGs of isolates isolated from humans has not changed significantly over the years (R = 0.013, P = 0.74), suggesting that the pathogenic risk to humans has not been reduced. Besides, mobile genetic elements are important contributors to ARGs in V. parahaemolyticus (R = 0.34, P < 2.2e-16), but have no promoting effect on VFGs (P = 0.50). The structural equation model illustrated that the human development index promoted the consumption of antibiotics, thereby indirectly promoting an increase in the AMR of the V. parahaemolyticus isolates. Finally, the random forest was performed to predict the ARG and VFG risks of global terrestrial V. parahaemolyticus isolates, and successfully map these threats with over 80% accuracy. This study aimed to evaluate the global risks posed by AMR and virulence, which helps to develop methods specifically targeting V. parahaemolyticus to mitigate these threats.


Subject(s)
Anti-Infective Agents , Vibrio parahaemolyticus , Humans , Anti-Bacterial Agents/pharmacology , Vibrio parahaemolyticus/genetics , Drug Resistance, Bacterial/genetics , Random Forest
3.
Environ Sci Technol ; 57(12): 4971-4983, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36929874

ABSTRACT

Shigella flexneri infection is the main cause of diarrhea in humans worldwide. The emergence of antimicrobial resistance (AMR) of S. flexneri is a growing public health threat worldwide, while large-scale studies monitoring the longitudinal AMR trends of isolates remain scarce. Here, the AMR gene (ARG) profiles of 717 S. flexneri isolates from 1920 to 2020 worldwide were determined. The results showed that the average number of ARGs in isolates has increased significantly, from 19.2 ± 2.4 before 1970 to 29.6 ± 5.3 after 2010. In addition, mobile genetic elements were important contributors to ARGs in S. flexneri isolates. The results of the structural equation model showed that the human development index drove the consumption of antibiotics and indirectly promoted the antibiotic resistance. Finally, a machine learning algorithm was used to predict the antibiotic resistance risk of global terrestrial S. flexneri isolates and successfully map the antibiotic resistance threats in global land habitats with over 80% accuracy. Collectively, this study monitored the longitudinal AMR trends, quantitatively surveilled the health risk of S. flexneri AMR, and provided a theoretical basis for mitigating the threat of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Dysentery, Bacillary , Humans , Anti-Bacterial Agents/pharmacology , Shigella flexneri/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/drug therapy
4.
Environ Model Softw ; 25(1): 100-106, 2010 Jan.
Article in English | MEDLINE | ID: mdl-32362767

ABSTRACT

This paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu are compared directly according to the number of human deaths. The nature of the short run and long run relationship is examined empirically by estimating a static line fixed effect model and a difference transformation dynamic model, respectively. Empirical results from the static fixed effect and difference transformation dynamic models are consistent, and indicate that both the short run and long run SARS effect have a more significant impact on international tourist arrivals than does Avian Flu. In addition, the effects of deaths arising from both SARS and Avian Flu suggest that SARS is more important to international tourist arrivals than is Avian Flu. Thus, while Avian Flu is here to stay, its effect is currently not as significant as that of SARS.

5.
Tour Manag ; 29(5): 917-928, 2008 Oct.
Article in English | MEDLINE | ID: mdl-32287724

ABSTRACT

The purpose of this paper is to investigate the impacts of infectious diseases including Avian Flu and severe acute respiratory syndrome (hereafter SARS) on international tourist arrivals in Asian countries using both single datasets and panel data procedures. An autoregressive moving average model together with an exogenous variables (ARMAX) model are used to estimate the effects of these diseases in each SARS- and Avian Flu-infected country, while a dynamic panel model is adopted to estimate the overall impact on the region of these two diseases. The empirical results from both approaches are consistent and indicate that the numbers of affected cases have a significant impact on SARS-affected countries but not on Avian Flu-affected countries. However, since the potential damage arising from the Avian Flu and subsequent pandemic influenza is much greater than that resulting from the SARS, the need to take the necessary precautions in the event of an outbreak of Avian Flu and pandemic influenza warrants further attention and action. Therefore, the empirical findings of this study could add to the knowledge regarding the relationship between tourism and crisis management, especially in so far as the management of transmissible diseases is concerned.

SELECTION OF CITATIONS
SEARCH DETAIL
...