Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6093, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030215

ABSTRACT

The strategy using water as a medium for dynamic modulation of competitive plasticity and viscoelasticity provides a unique perspective to attain adaptive materials. We reveal sustainable polymers, herein cellulose phenoxyacetate as a typical example, with unusual water-responsive dual-mechanic functionalities addressed via a chronological water training strategy. The temporal significance of such water-responsive mechanical behaviors becomes apparent considering that a mere 3-minute exposure or a prolonged 3-hour exposure to water induced different types of mechano-responsiveness. This endows the materials with multiple recoverable shape-changes during water and air training, and consequently even underlines the switchability between the pre-loaded stable water shapes (> 20 months) and the sequentially fixed air shapes. Our discovery exploits the competitive mechanics initiated by water training, enabling polymers with spatially regulated microstructures via their inherently distinct mechanical properties. Insights into the molecular changes represents a considerable fundamental innovation, can be broadly applicable to a diverse array of hydroadaptive polymers.

2.
Front Nutr ; 11: 1406817, 2024.
Article in English | MEDLINE | ID: mdl-38746936

ABSTRACT

Russula, a renowned edible fungus, has gained popularity as a functional food among diverse populations due to the abundant presence of amino acids, proteins, and polysaccharides. As the primary constituents of Russula, polysaccharides exhibit a wide range of biological properties, making them an exceptional choice for incorporation into food, medicines, and diverse biotechnological applications. This review provides a summary of the recent research on the extraction, purification, and biological applications of polysaccharides from various Russula spp. Currently, there are many advanced extraction technologies, such as hot water-based extraction, alkali-based extraction, ultrasonic-assisted extraction and microwave-assisted extraction. Hence, the latest progress of extraction technologies, as well as their advantages and limitations will be discusses and summarizes in this review. The separation and purification methods of polysaccharide from Russula were introduced, including ethanol precipitation, deproteinization and gel filtration chromatography. It also focuses on exploring the diverse bioactive capabilities of Russula, including anti-oxidant, anti-tumor, immunomodulatory, anti-inflammation, and anti-bacterial properties. Hence, this review aims to foster a comprehensive understanding of the polysaccharides from various Russula spp. and pave the way for their promising and potential future applications in the medical and functional fields.

3.
Int J Biol Macromol ; 270(Pt 2): 132441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761897

ABSTRACT

Pest management technology has been a promising bioconversion method for waste resource utilization. Unlike many pests that consume waste, the larvae of Lucilia sericata, also known as maggots, have many outstanding advantages as following: with their strong adaption to environment and not easily infected and exhibiting a medicinal nutritional value. Herein, the potential efficacies of maggot polysaccharides (MP), as well as their underlying mechanisms, were explored in Dextran sulfate sodium (DSS)-induced colitis mice and TNF-α-elicited Caco-2 cells. We extracted two bioactive polysaccharides from maggots, MP-80 and MP-L, whose molecular weights were 4.25 × 103 and 2.28 × 103 g/mol, respectively. MP-80 and MP-L contained nine sugar residues: 1,4-α-Arap, 1,3-ß-Galp, 1,4,6-ß-Galp, 1,6-α-Glcp, 1-α-Glcp, 1,4-ß-Glcp, 1-ß-Xylp, 1,2-α-Manp, and 1-ß-Manp. We demonstrated that MP-80 and MP-L significantly ameliorated DSS-induced symptoms and histopathological damage. Immuno-analysis revealed that compared with MP-L, MP-80 could better restore intestinal barrier and reduced inflammation by suppressing NLRP3/NF-κB pathways, which might be attributed to its enriched galactose fraction. Moreover, 16S rRNA sequencing revealed that MP-80 and MP-L both improved the dysbiosis and diversity of gut microbiota and acted on multiple microbial functions. Our study sheds new light on the possibility of using maggot polysaccharides as an alternative therapy for colitis.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Larva , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Larva/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Humans , Mice , Caco-2 Cells , Diptera/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Disease Models, Animal , Male
4.
Int J Biol Macromol ; 267(Pt 2): 131505, 2024 May.
Article in English | MEDLINE | ID: mdl-38631574

ABSTRACT

Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.


Subject(s)
Bibliometrics , Biomass , Cellulose , Lignin , Orthopedics , Polysaccharides , Lignin/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Humans , Tissue Engineering/methods
5.
Nano Lett ; 24(12): 3811-3818, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470141

ABSTRACT

Water responsive polymers represent a remarkable group of soft materials, acting as a laboratory for diverse water responsive physical phenomena and cutting-edge biology-electronics interfaces. We report on peculiarly distinctive viscoelastic behaviors of the biobased water responsive polymer cellulose 10-undecenoyl ester, while biobased regenerated cellulose displays stronger hydroplastic behaviors. We discovered a novel hydrous deformation mechanism involving the stretching of hydrogen bonds mediated by hydroxyl groups and water molecules, serving as a crucial factor in accommodating deformations. In parallel, the microstructure of cellulose 10-undecenoyl ester with unique coexisting nanoparticles and a continuous phase of entangled chains is mechanically resilient in the anhydrous state but enhances structural stiffness in the hydrous state. This variation arises from a different hydration level within the hydrous microstructure. Such a fundamental discovery offers valuable insights into the connection between the microscopic physical properties that can be influenced by water and the corresponding viscoelastic responses, extending its applicability to a wide range of hygroscopic materials.

6.
Int J Biol Macromol ; 266(Pt 1): 131003, 2024 May.
Article in English | MEDLINE | ID: mdl-38521326

ABSTRACT

High-purity pulp fibers can be obtained by using chlorine dioxide to oxidize lignin. However, organic halogen compounds (AOX) are generated from chlorination side reactions during the lignin oxidation process. In this study, phenolic lignin model compounds with different substituents were selected. The effects of substituent position on the production of free radicals and oxidative ring opening in benzene rings were analyzed. It was found that the structural transformation of lignin and the reaction consumption of ClO2 were significantly changed under high concentration of ClO2. The molar consumption ratio of compound to ClO2 was increased from 1:2 to 1:3. Quinone, an intermediate product that promotes the formation of phenoxy radicals, was found to be stabilized in the reaction. This is attributed to that the benzene ring of lignin is activated through long-range electrostatic interactions. The formation of free radicals and the oxidative ring-opening reaction of benzene rings were facilitated. The efficient oxidation of lignin by ClO2 was fulfilled. Chlorination reactions of lignin were suppressed at elevated oxidation efficiency. The pollution load of wastewater was significantly reduced. AOX generation was reduced by 69.27 %. This provides a new method for efficient oxidative degradation of lignin and preparation of high purity pulp fiber.


Subject(s)
Chlorine Compounds , Lignin , Oxidation-Reduction , Oxides , Lignin/chemistry , Chlorine Compounds/chemistry , Oxides/chemistry , Halogenation , Wastewater/chemistry
7.
ACS Nano ; 18(5): 4329-4342, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38261787

ABSTRACT

Lignin, as an abundant aromatic biopolymer in plants, has great potential for medical applications due to its active sites, antioxidant activity, low biotoxicity, and good biocompatibility. In this work, a simple and ecofriendly approach for lignin fractionation and modification was developed to improve the antitumor activity of lignin. The lignin fraction KL-3 obtained by the lignin gradient acid precipitation at pH = 9-13 showed good cytotoxicity. Furthermore, the cell-feeding lignin after additional structural modifications such as demethylation (DKL-3), sulfonation (SL-3), and demethylsulfonation (DSKL-3) could exhibit higher glutathione responsiveness in the tumor microenvironment, resulting in reactive oxygen species accumulation and mitochondrial damage and eventually leading to apoptosis in HepG2 cells with minimal damage to normal cells. The IC50 values for KL-3, SL-3, and DSKL-3 were 0.71, 0.57, and 0.41 mg/mL, respectively, which were superior to those of other biomass extractives or unmodified lignin. Importantly, in vivo experiments conducted in nude mouse models demonstrated good biosafety and effective tumor destruction. This work provides a promising example of constructing carrier-free functionalized lignin antitumor materials with different structures for inhibiting the growth of human hepatocellular carcinoma (HepG2) cells, which is expected to improve cancer therapy outcomes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Polyurethanes , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Hep G2 Cells , Lignin/pharmacology , Tumor Microenvironment
8.
ChemSusChem ; 17(8): e202301161, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38123529

ABSTRACT

Current DES pretreatment is often performed under relatively severe conditions with high temperature, long time, and high DES usage. This work studied a short-time diol DES (deep eutectic solvent) pretreatment under mild conditions to fractionate the bamboo, facilitate enzymatic hydrolysis, and obtain high-quality lignin. At an optimized condition of 130 °C for only 10 min, lignin and xylan removal reached 61.34 % and 84.15 %, with residual glucan showing a ~90 % enzymatic hydrolysis yield. Equally important, the dissolved lignin could be readily recovered with 97.51 % yield, exhibiting 96.65 % ß-O-4 preservation. The fractionation and lignin protection mechanisms were unveiled by XRD, FTIR, cellulose-DP, 2D HSQC NMR, 31P NMR and GPC analysis. This study highlighted that short-time fractionation of bamboo can be achieved by a diol-based DES which is an ideal strategy to upgrade the lignocellulose biomass for high enzymatic hydrolysis yields and high-quality lignin stream.


Subject(s)
Biomass , Chemical Fractionation , Lignin , Lignin/chemistry , Hydrolysis , Chemical Fractionation/methods , Deep Eutectic Solvents/chemistry , Cellulase/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL