Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
BMC Med Imaging ; 24(1): 139, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858620

ABSTRACT

BACKGROUND: The ethmoid sinus (ES) is a three-dimensional (3D) complex structure, a clear understanding of the ES anatomy is helpful to plan intranasal surgery. However, most prior studies use 2D measurements, which may not accurately depict the 3D structure. The current study measured the gender differences in ES morphology based on 3D reconstruction of computed tomography (CT) images. METHODS: The 3D models were reconstructed using CT images. Twenty-one males and 15 females were enrolled in the study. The ES dimensions, including width, height and aspect ratio (AR) of each cutting-plane section, were measured at 10% increments along with the anteroposterior axis of the ES. The gender differences in the above parameters were further evaluated by an independent t-test. RESULTS: The width of the ES for males is 12.0 ± 2.1 mm, which was significantly greater than that in females (10.0 ± 2.1 mm). The average height for males is 18.4 ± 3.5 mm, and 18.2 ± 3.4 mm for females. The AR of female (male) is around 0.56 (0.63) for the anterior ES and 0.66 (0.75) for the posterior. There are significant differences between genders in the parameters of width and AR (p < 0.05). CONCLUSION: This study found that the aspect ratio greatly varies along the length of ES, indicating that the cross-section of the ES in the anterior is closer to an elliptical shape and turns closer to a circular shape near its posterior. There is a significant difference between genders in width and aspect ratio. The results would be helpful to know the complex anatomic details of the ethmoid sinus.


Subject(s)
Ethmoid Sinus , Imaging, Three-Dimensional , Tomography, X-Ray Computed , Humans , Male , Female , Imaging, Three-Dimensional/methods , Ethmoid Sinus/diagnostic imaging , Ethmoid Sinus/anatomy & histology , Tomography, X-Ray Computed/methods , Adult , Sex Factors , Middle Aged , Young Adult
2.
Bone Joint Res ; 13(4): 137-148, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38555936

ABSTRACT

Aims: Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods: Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results: The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion: The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC.

3.
Polymers (Basel) ; 15(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37376366

ABSTRACT

Polyetheretherketone (PEEK) is an emerging thermoplastic polymer with good mechanical properties and an elastic modulus similar to that of alveolar bone. PEEK dental prostheses for computer-aided design/computer-aided manufacturing (CAD/CAM) systems on the market often have additives of titanium dioxide (TiO2) to strengthen their mechanical properties. However, the effects of combining aging, simulating a long-term intraoral environment, and TiO2 content on the fracture characteristics of PEEK dental prostheses have rarely been investigated. In this study, two types of commercially available PEEK blocks, containing 20% and 30% TiO2, were used to fabricate dental crowns by CAD/CAM systems and were aged for 5 and 10 h based on the ISO 13356 specifications. The compressive fracture load values of PEEK dental crowns were measured using a universal test machine. The morphology and crystallinity of the fracture surface were analyzed by scanning electron microscopy and an X-ray diffractometer, respectively. Statistical analysis was performed using the paired t-test (α = 0.05). Results showed no significant difference in the fracture load value of the test PEEK crowns with 20% and 30% TiO2 after 5 or 10 h of aging treatment; all test PEEK crowns have satisfactory fracture properties for clinical applications. Fracture surface analysis revealed that all test crowns fractured from the lingual side of the occlusal surface, with the fracture extending along the lingual sulcus to the lingual edge, showing a feather shape at the middle part of the fracture extension path and a coral shape at the end of the fracture. Crystalline analysis showed that PEEK crowns, regardless of aging time and TiO2 content, remained predominantly PEEK matrix and rutile phase TiO2. We would conclude that adding 20% or 30% TiO2 to PEEK crowns may have been sufficient to improve the fracture properties of PEEK crowns after 5 or 10 h of aging. Aging times below 10 h may still be safe for reducing the fracture properties of TiO2-containing PEEK crowns.

4.
J Mech Behav Biomed Mater ; 138: 105669, 2023 02.
Article in English | MEDLINE | ID: mdl-36634436

ABSTRACT

Self-expanding sinus stents are often used in functional endoscopic sinus surgery to treat inflamed sinuses. The PROPEL self-expanding sinus stent offers mechanical support to the sinus cavity to prevent restenosis. The stent is made of a bioabsorbable material (PLGA) that disappears after wound healing. However, complications such as foreign body sensation and severe stent migration/expulsion have been reported after implantation. Little is known about the contact characteristics of self-expanding sinus stents from when the stent is crimped into the insertion device through to deployment into the sinus cavity. This current study developed a test platform to analyze the biomechanical behavior of the stent during this process. Three common bioabsorbable materials, PLGA, PCL and Mg alloy, were evaluated to understand how the choice of material affects the biomechanical characteristics of self-expanding sinus stents. The results showed that the material can have a considerable influence on the contact characteristics during crimping and deployment. When crimped, the PLGA and Mg alloy stents showed much higher plastic strain and contact stress than the PCL stent. When deployed, the PCL stent had the largest contact area (4.3 mm2) and the lowest contact pressure (0.1 MPa) on the inner surface of the sinus canal. The results indicate that PCL could be a suitable choice for self-expanding sinus stents. This current study provides a method for observing the biomechanical characteristics of sinus stents during stent crimping and deployment.


Subject(s)
Alloys , Biocompatible Materials , Stents , Finite Element Analysis , Wound Healing
5.
Int Orthop ; 47(4): 1041-1049, 2023 04.
Article in English | MEDLINE | ID: mdl-36680634

ABSTRACT

PURPOSE: To determine whether avascular necrosis can affect clinical outcomes or the union incidence after arthroscopic bone grafting for the treatment of scaphoid nonunion. METHODS: This retrospective comparative study included thirty-four patients with scaphoid nonunion that underwent arthroscopic bone graft from the ipsilateral radius and internal fixation. The patients were divided into two cohorts (group A, with avascular necrosis, n = 15; group B, without avascular necrosis, n = 19) based on pre-operative magnetic resonance imaging findings. Additionally, the patients were grouped in accordance with the location of nonunion (waist, n = 27; proximal pole, n = 7). The mean follow-up was 20.7 months (range 12.0-40.0 months). Clinical outcomes, including the visual analog scale (VAS) pain score, grip strength, range of motion (ROM), Mayo Wrist Score (MWS), and Disabilities of the Arm, Shoulder, and Hand (DASH) score, were evaluated. Radiographic measurements for carpal bone alignment were assessed as well. RESULTS: Union rates did not differ between groups (group A, 93.3%; group B, 94.7%: p = 0.863), and the post-operative VAS pain score, ROM, and MWS were similar at follow-up for a minimum of one year. DASH and grip strength were significantly better in group B, but the intergroup differences were minimal (mean DASH 11.9 versus 9.6; mean grip strength 77.5% versus 95.4% of contralateral side). There was no significant intergroup difference in mean time to achieving union (group A, 14.9 weeks; group B, 14.6 weeks; p = 0.900). In post-operative radiographic assessments, no significant intergroup differences were noted in any of the parameters. Subgroup analysis regarding the location of nonunion showed there were no significant intergroup differences in union rates, mean time to achieving union, and clinical outcome measures at the last post-operative follow-up. CONCLUSIONS: Arthroscopic bone grafting and internal fixation in the treatment of scaphoid nonunion provided good union rates and satisfactory outcomes regardless of vascularity status.


Subject(s)
Fractures, Ununited , Osteonecrosis , Scaphoid Bone , Humans , Radius/diagnostic imaging , Radius/surgery , Retrospective Studies , Bone Transplantation/methods , Scaphoid Bone/diagnostic imaging , Scaphoid Bone/surgery , Fracture Fixation, Internal/adverse effects , Fracture Fixation, Internal/methods , Bone Screws , Osteonecrosis/diagnostic imaging , Osteonecrosis/surgery , Range of Motion, Articular , Fractures, Ununited/diagnostic imaging , Fractures, Ununited/surgery , Pain , Treatment Outcome
6.
Med Biol Eng Comput ; 61(2): 475-484, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36515776

ABSTRACT

Self-tapping implants with self-cutting flutes may influence primary stability, especially for the immediate implant placement and restoration protocol in which implants are affixed to the bone in the apical portion. Screw geometry differs between brands, and the effect of apical design on its clinical outcomes remains unclear. This study is aimed at investigating the influence of cutting flute shape (spiral, straight, and without flute) on primary stability by using a dynamic experimental test. Six types of dental implants were designed using computer-aided design and computer-aided manufacturing technology, consisting of three types of cutting flute shapes along with two types of screw features. A dynamic mechanical test was performed using a cyclic loading scheme. The mechanical behaviors of resistance to lateral load (RLL), maximum force, and energy dissipation were compared between groups. In the dynamic test, implants without cutting flute also exhibited higher values in RLL, maximum force, and energy dissipation. The aggressive thread implant with straight flute displayed higher RLL and had a significantly higher values in RLL (p = 0.033) at the threshold point of bone-implant interface breakdown. The implants without cutting flutes exhibited higher primary stability. Straight flute design would improve RLL for aggressive thread implant.


Subject(s)
Dental Implants , Mechanical Phenomena , Bone and Bones , Torque , Bone Screws
7.
BMC Musculoskelet Disord ; 23(1): 957, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36333815

ABSTRACT

BACKGROUND: Angular stable locking plates have shown good clinical results in treating proximal humeral fractures, but complications are not uncommon. This study reported a rare case of catastrophic failure of a titanium locking plate. A retrieval analysis of the implants was performed using an optic microscope and a scanning electron microscope. CASE PRESENTATION: A 69-year-old male reported a right proximal humeral fracture at the surgical neck and was treated by open reduction and internal fixation with a locking plate system. Ninety-six days after surgery, the patient came to clinic for acute local pain over the shoulder without any trauma. The radiographs showed a complete breakage of the implant accompanying displaced fracture. Revision surgery was performed to restabilize the fracture with a longer locking plate. The follow-up radiographs at 9 months showed complete union of the bone fracture. CONCLUSIONS: From the retrieval analysis, repetitive torsion loads on the vulnerable area of the implant are assumed to cause this catastrophic event. It is recommended that adequate activity restriction, such as reaching, be undertaken to avoid this rare complication. Current study also provides contributive information for the modification of plate design and pre-operative planning for device configuration to improve the success rate of locking plate fixation.


Subject(s)
Shoulder Fractures , Titanium , Male , Humans , Aged , Shoulder Fractures/diagnostic imaging , Shoulder Fractures/surgery , Bone Plates/adverse effects , Fracture Fixation, Internal/methods , Open Fracture Reduction , Treatment Outcome
8.
Polymers (Basel) ; 14(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36236071

ABSTRACT

Although polyetheretherketone (PEEK) is becoming more widely used in dentistry applications, little is known about how aging will affect this material. Therefore, this study aimed to investigate the influence of an aging treatment on fracture characteristics of PEEK dental crowns. Additionally, the impact of the addition of titanium dioxide (TiO2) into PEEK was examined. Two types of commercial PEEK discs were used in this study, including TiO2-free and 20% TiO2-containing PEEK. The PEEK dental crowns were fabricated and aging-treated at 134 °C and 0.2 MPa for 5 h in accordance with the ISO 13356 specification before being cemented on artificial tooth abutments. The fracture loads of all crown samples were measured under compression tests. Results demonstrated that adding TiO2 enhanced the fracture load of PEEK crowns compared to TiO2-free PEEK crowns before the aging treatment. However, the aging treatment decreased the fracture load of TiO2-containing PEEK crowns while increasing the fracture load of TiO2-free PEEK crowns. The fracture morphology of TiO2-containing PEEK crowns revealed finer feather shapes than that of the TiO2-free PEEK crowns. We concluded that adding TiO2 increased the fracture load of PEEK crowns without aging treatment. Still, the aging treatment influenced the fracture load and microscopic fracture morphology of PEEK crowns, depending on the addition of TiO2.

9.
J Orthop Surg Res ; 17(1): 335, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35765082

ABSTRACT

BACKGROUND: Osteolysis is one of the most prevalent clinical complications affecting people who undergo total joint replacement (TJR). Wedelolactone (WDL) is a coumestan compound derived from the Wedelia chinensis plant and has been demonstrated to exhibit anti-inflammatory properties. This study aimed to investigate the oral administration of WDL as a potential treatment for particle-induced osteolysis using a well-established mice calvarial disease model. METHODS: Thirty-two C57BL/6 J mice were randomized into four groups: Sham, vehicle, osteolysis group with oral WDL treatment for 4 weeks (WDL 4w), and osteolysis group treated for 8 weeks (WDL 8w). Micro-CT was used to quantitatively analyze the bone mineral density (BMD), bone volume/tissue volume (BV/TV) and trabecular bone thickness (Tb.Th). Osteoclast numbers were also measured from histological slides by two investigators who were blind to the treatment used. RESULTS: The results from micro-CT observation showed that BMD in the WDL 8w group improved significantly over the vehicle group (p < 0.05), but there was no significant difference between WDL 4w and 8w for BV/TV and Tb.Th. Osteoclast numbers in the WDL 4w group were also lower than the vehicle group (p < 0.05), but the difference between WDL 8w and 4w groups was not significant. CONCLUSIONS: Particle-induced osteolysis is an inevitable long-term complication after TJR. The results of this animal study indicate that an oral administration of WDL can help reduce the severity of osteolysis without adverse effects.


Subject(s)
Osteolysis , Animals , Coumarins , Humans , Mice , Mice, Inbred C57BL , Osteolysis/chemically induced , Osteolysis/diagnostic imaging , Osteolysis/drug therapy , Plant Extracts/therapeutic use , Research Design
10.
Nanotoxicology ; 16(1): 1-15, 2022 02.
Article in English | MEDLINE | ID: mdl-35085045

ABSTRACT

Graphene is a novel material which has recently been gaining great interest in the biomedical fields. Our previous study observed that graphene-derived particles help induce bone formation in a murine calvarial model. Here, we further developed a blended graphene-contained polycaprolactone (PCL/G) filament for application in a 3D-printed bone scaffold. Since implants are expected to be for long-term usage, in vitro cell culture and in vivo scaffold implants were evaluated in a critical-size bone defect calvarial model for over 60 weeks. Graphene greatly improved the mechanical strength by 30.2% compared to pure PCL. The fabricated PCL/G scaffolds also showed fine cell viability. In animal model, an abnormal electroencephalogram power spectrum and early signs of aging, such as hair graying and hair loss, were found in the group with a PCL/G scaffold compared to pure PCL scaffold. Neither of the abnormal symptoms caused death of all animals in both groups. The long-term use of graphene-derived biomaterials for in-vivo implants seems to be safe. But the comprehensive biosafety still needs further evaluation.


Subject(s)
Graphite , Tissue Scaffolds , Animals , Biocompatible Materials , Graphite/toxicity , Mice , Osteogenesis , Polyesters/pharmacology , Skull
11.
Clin Biomech (Bristol, Avon) ; 89: 105453, 2021 10.
Article in English | MEDLINE | ID: mdl-34438334

ABSTRACT

BACKGROUND: Self-tapping screws have been extensively used for dental implants. Their biomechanical behavior is highly associated with their clinical success, particularly for screws used for immediate implant placement and restoration, because occlusal forces can directly affect the loading transfer at the bone-implant interface after implantation. The effect of implant design on the initial stability of self-tapping screws remains unclear. This study explored the biomechanical behaviors of implant stability in standardized implants with different design features. METHODS: Six types of dental implants were designed using computer-aided design/computer-aided manufacturing technology, including three types of cutting flute shapes (spiral, straight, and non-self-tapping) combined with two types of screw features. Peak insertion torque values were first recorded; initial stability levels were subsequently evaluated in terms of the maximum force and resistance to lateral loads using an electrodynamic test system. FINDINGS: The peak insertion torque values, maximum force, and resistance to lateral loads of the non-self-tapping groups were higher than those of the self-tapping groups by 17%-90% (p < 0.01). The peak insertion torque values of the Straumann implant with a spiral flute was higher than that of the original straight flute by 20% (p < 0.001). However, compared with the original spiral flute, the Nobel Biocare implant with straight flute had a 23% higher maximum force (p = 0.016) and 24.5% higher resistance (p = 0.012) under lateral loading. INTERPRETATION: Changing the flute design would affect initial implant stability. Non-self-tapping implants exhibited superior initial stability than did self-tapping implants.


Subject(s)
Bone Screws , Dental Implants , Humans , Mechanical Phenomena , Torque
12.
Polymers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300997

ABSTRACT

Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement with considerable morbidity and large economic burdens. Antibiotic-Loaded Bone Cement (ALBC) has been developed as a valuable tool for local administration and is becoming one of the most effective methods for the prevention and treatment of orthopedic infections. Controlling antibiotic release from ALBC is critical to achieve effective infection control, however, the antibiotic elution rates are generally low, and the mechanisms are poorly understood. Thus, the present study aims to investigate the effects of the basic acrylic bone cement components, including liquid/powder (monomer-to-polymer) ratios, radiopacifier, initiator, and doses of antibiotics on the porosity, antibiotic elution rates and mechanical properties of polymethylmethacrylate (PMMA) based ALBC. The obtained results from the in vitro studies suggested that a reduction in the liquid/powder ratio and an increase in the radiopacifier ratio and gentamicin doses led to increased porosity and release of antibiotic, while the initiator ratio exerted no effect on elution rates. In conclusion, we hope that by varying the composition of ALBC, we could considerably enhance the antibiotic elution rates by increasing porosity, while maintaining an adequate mechanical strength of the bone cements. This finding might provide insights into controlling antibiotic release from ALBC to achieve effective infection control after total joint replacement surgery.

13.
Knee Surg Sports Traumatol Arthrosc ; 29(2): 563-572, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32232538

ABSTRACT

PURPOSE: This study aimed to analyze the morphology of the anterior femoral condyle using a quantitative three-dimensional reconstruction method. The morphological data were compared between genders. METHODS: Computed tomography scans of femurs were taken from 90 healthy subjects and then reconstructed in 3D modeling software. Coaxial cutting planes were created at 10° increments to measure the lateral and medial anterior condylar heights (LACH and MACH, respectively), lateral and medial trochlear groove widths (LTW and MTW, respectively), and for trochlear groove tracking. The absolute values and normalized data were compared between male and female subjects. The sulcus angle and deepest point of the trochlear groove at each cross-section were also analyzed to determine the differences in the depth of the trochlear groove. RESULTS: The absolute dimensions of LACH, MACH, LTW, and MTW were significantly smaller in the female subjects, by 10.5%, 36.9%, 10.3%, and 11.0%, respectively, than in the males (p < 0.05). After normalization, no significant difference was found in the condylar height between the genders. However, the female subjects had a significantly larger value of approximately 7.9% for the normalized trochlear width. CONCLUSION: Male subjects had greater condylar heights and widths than the female subjects. Although the trajectory of the trochlear groove varied greatly among the subjects, the trochlear groove appeared to be wider and shallower in the female subjects than in the male subjects. These results provide important information for the design of femoral trochlea to fit Asian female patients. LEVEL OF EVIDENCE: III.


Subject(s)
Femur/anatomy & histology , Knee Prosthesis , Prosthesis Design , Sex Characteristics , Adult , Asian People , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Reference Values , Tomography, X-Ray Computed , White People , Young Adult
14.
Life Sci ; 265: 118832, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33259866

ABSTRACT

AIMS: Inflammatory macrophages have been proposed as a therapeutic target for joint disorders caused by inflammation. This study aimed to investigate the expression and regulation of coxsackievirus-adenovirus receptor (CAR) in lipopolysaccharide (LPS)-stimulated inflammatory macrophages whereby to evaluate the feasibility of virus-directed enzyme prodrug therapy (VDEPT). MAIN METHODS: Macrophage cell lines (RAW264.7 and J774A.1) and primary macrophage cells derived from rat spleen were used to evaluate the expression of CAR protein or CAR mRNA. Specific inhibitors for TLR4 pathway were used to investigate the regulation of CAR expression. CAR expression in rat joints was documented by immunohistochemistry. Conditionally replicating adenovirus, CRAd-EGFP(PS1217L) or CRAd-NTR(PS1217H6), and non-replicating adenovirus CTL102 were used to transduce genes for enhanced green fluorescent protein (EGFP) or nitroreductase (NTR), respectively. The expression of EGFP, NTR, and the toxicity induced by CB1954 activation were evaluated. KEY FINDINGS: The in vitro experiments revealed that CAR upregulation was mediated through the TLR4/TRIF/IRF3 pathway in LPS-stimulated inflammatory macrophage RAW264.7 and J774A.1 cells. The inflammatory RAW264.7 cells upregulated CAR expression following LPS stimulation, leading to higher infectability, increased NTR expression, and enhanced sensitization to CB1954. In animal experiments, the induction of CAR expression was observed in the CD68-expressing primary macrophages and in the CD68-expressing macrophages within joints following LPS stimulation. SIGNIFICANCE: In conclusion, we report an enhanced CAR expression in inflammatory macrophages in vitro and in vivo through the immune response elicited by LPS. Thus, the TLR4/TRIF/IRF3 pathway of macrophages, when activated, could facilitate the therapeutic application of adenovirus-mediated VDEPT.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Immunity, Innate/immunology , Inflammation/pathology , Macrophages/pathology , Adenoviridae/genetics , Animals , Cell Line , Genetic Vectors/administration & dosage , Inflammation/genetics , Inflammation/immunology , Interferon Regulatory Factor-3/metabolism , Lipopolysaccharides , Macrophages/immunology , Male , Mice , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism
15.
Bone Joint Res ; 9(11): 768-777, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33135462

ABSTRACT

AIMS: The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. METHODS: Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison. RESULTS: The stress and strain on the tibial post for the three polyethylenes greatly increased when the insert was placed in malrotation, showing a 38% to 56% increase in von Mises stress and a 335% to 434% increase in PEEQ. The VEPE insert had the lowest PEEQ among the three materials. The mobile-bearing design exhibited a lower increase in stress and strain around the tibial posts than the fixed-bearing design. CONCLUSION: Using VEPE for the tibial component potentially eliminates the risk of material permanent deformation. The mobile-bearing insert can help to avoid a dramatic increase in plastic strain around the tibial post in cases of malrotation. The mobility allows the pressure to be distributed on the tibial post and demonstrated lower stresses with all three polyethylenes simulated. Cite this article: Bone Joint Res 2020;9(11):768-777.

16.
Clin Biomech (Bristol, Avon) ; 74: 124-130, 2020 04.
Article in English | MEDLINE | ID: mdl-32361012

ABSTRACT

BACKGROUND: This study evaluated the effect of two self-tapping implants on implant stability in immediate implantation. METHODS: Two types of self-tapping implants, straight flute (STF) and spiral flute (SPF) designs, were studied. Two synthetic bone blocks with varying densities (0.32 g/cm3 and 0.16 g/cm3) were chosen to simulate the bone quality of the anterior maxilla. Insertion torque values were measured by a torque testing machine during implant insertion. Four biomechanical tests were performed: resonance frequency analysis was conducted using the Osstell device, and the strengths of screw push-in, lateral bending, and pull-out were evaluated using an MTS machine. The strength for each design feature was obtained by averaging the results of 10 trials. In total, 40 specimens were tested for each bone density. Statistical difference was determined by one-way analysis of variance followed by Bonferroni post hoc multiple tests between groups. FINDINGS: The STF and SPF groups exhibited similar insertion torque values (p = 0.525 in low-density bone, and p = 0.99 in high-density bone). A significant difference (p < 0.001) was observed in the push-in test between the two groups when low-density bone was tested. The SPF group exhibited a significantly higher lateral bending force (p = 0.001) and a higher stiffness (p < 0.001) than the STF group in high-density bone. The SPF design attained higher (p < 0.001) ISQ numbers than the STF design, but all numbers were below 60. INTERPRETATION: Implant stability can be influenced by the apical fixture design of self-tapping implants in immediate implantation.


Subject(s)
Dental Implants , Mechanical Phenomena , Prosthesis Design , Biomechanical Phenomena , Bone Density , Humans , Surface Properties , Torque
17.
Int J Nanomedicine ; 15: 647-659, 2020.
Article in English | MEDLINE | ID: mdl-32099357

ABSTRACT

BACKGROUND: Graphene and its derivatives have recently gained popularity in the biomedical field. Previous studies have confirmed that both the mechanical strength and wear resistance of graphene-containing polyethylene have been greatly improved. Therefore, it is being considered as an alternative for artificial joint replacement liners. Based on the literature, the wear debris generated from the traditional polymers used for orthopedic liners could lead to particle-induced osteolysis and, consequently, failure of joint replacement. However, the biological response of this novel graphene-based polymer is still unclear. Therefore, the current study aimed to investigate the in vitro and in vivo biological effects of graphene and graphene oxide (GO) particles on bone. MATERIALS AND METHODS: The biological responses of graphene and GO particles were tested via in vitro and murine calvarial in vivo models. In the in vitro model, murine macrophage cells were mixed with particles and hydrogel and printed into two differently designed scaffolds; the induced proinflammatory cytokines were then tested. In the murine in vivo model, the particle size distribution was measured via SEM, and these particles were then administrated in the calvarial area, referring to our established model. A micro-CT and histological analysis were performed to examine the biological effects of the particles on bone health. The data were analyzed via the one-way analysis of variance to determine the differences between the groups. RESULTS: Both graphene and GO induced significantly higher TNF-α and IL-6 secretion compared with the control in the three-dimensional in vitro model. In the murine calvarial in vivo test, the graphene and GO particles increased the bone mass compared with the sham groups in the micro-CT analysis. Bone formation was also observed in the histological analysis. CONCLUSION: In these in vivo and in vitro studies, the graphene and GO wear debris did not seem to induce harmful biological response effect to bone. Bone formation around the skull was observed in the calvarial model instead. Graphene-containing biomaterials could be a suitable new material for application in orthopedic prostheses due to their benefit of eliminating the risk of particle-induce osteolysis.


Subject(s)
Graphite/pharmacology , Osteolysis/drug therapy , Skull/drug effects , Animals , Biocompatible Materials/pharmacology , Female , Interleukin-6/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Osteogenesis/drug effects , Osteolysis/pathology , Particle Size , RAW 264.7 Cells , Skull/cytology , Skull/diagnostic imaging , Tissue Scaffolds , Tumor Necrosis Factor-alpha/metabolism , X-Ray Microtomography
18.
Clin Oral Implants Res ; 31(2): 144-152, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31647133

ABSTRACT

OBJECTIVE: This study investigated the effects of abutment screw withdrawal after conical abutment settlement on the stability of the implant-abutment connection. MATERIALS AND METHODS: Twenty implants of a conical connection system were used. Two two-piece abutment designs were used: cone only (n = 10; NI) and cone plus octagonal index design (n = 10; I); for each design, five samples were used with (S) and without (NS) abutment screw withdrawal before a cyclic test. Finally, four groups, namely Gr S(NI), Gr S(I), Gr NS(NI), and Gr NS(I), were included. The cyclic test included cyclic loading of 20-200 N, 30°, and 4-mm off-axis to implant axis at 10 Hz for 106 cycles, simulating a clinical time interval of 40 months. The fatigue cycles were recorded. The axial displacement of the conical abutments during abutment settlement, screw withdrawal, and cyclic loading were measured. Abutment morphology was examined through scanning electron microscopy (SEM). RESULTS: Only Gr NS(NI) failed the test, indicating that without the index design and abutment screw withdrawal, and connection stability seriously deteriorated. Gr NS(I) exhibited significantly higher axial displacement into the implant after abutment settlement than did Gr NS(NI). It also exhibited continuous axial displacement into the implant after cyclic loading. SEM after cyclic testing in Gr NS(I) revealed marked burnishing on lateral edges of the index, indicating that the index design provides an antitorsional ability. CONCLUSION: Although this study has few limitations, abutment screw withdrawal is feasible in this conical implant-abutment connection system with index design.


Subject(s)
Dental Implant-Abutment Design , Dental Implants , Bone Screws , Dental Abutments , Dental Stress Analysis , Materials Testing , Pilot Projects , Torque
19.
Stem Cell Res Ther ; 10(1): 2, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30606221

ABSTRACT

BACKGROUND: Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. METHODS: Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. RESULTS: TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU- TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. CONCLUSIONS: The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.


Subject(s)
Achilles Tendon/physiopathology , Eye Proteins/metabolism , Nerve Growth Factors/metabolism , Peptides/metabolism , Regeneration/genetics , Serpins/metabolism , Stem Cells/metabolism , Tendon Injuries/therapy , Animals , Humans , Rabbits , Rats , Stem Cells/cytology
20.
J Mech Behav Biomed Mater ; 90: 426-432, 2019 02.
Article in English | MEDLINE | ID: mdl-30445369

ABSTRACT

OBJECTIVES: Conical implant-abutment connections are popular for its anti-bending performance; on the other hand, the torsional and axial forces also play important roles in occlusion. However, so far there were scarce studies on their effects on connection stability. Therefore, this study seeks to investigate the mechanical performance of conical connections under different cyclic loading conditions. METHODS: 15 conical implant-abutment assembles (Cowell Medi, Busan, South Korea) were divided into 3 groups according to different cyclic loadings. In group BTA, the loading condition of the posterior occlusion was simulated (20-200 N, 30° off-axis and 4 mm eccentric to implant axis), generating a bending moment, a torsional moment, and an axial loading. In group BT, a bending moment and a torsional moment of the posterior occlusion were applied (10-100 N, 90° off-axis and 4 mm eccentric to implant axis). In group B, only a bending moment was applied (10-100 N, 90° off-axis and through implant axis). The fatigue testing machine ran at 10 Hz until failure, or to the upper limit of 106 cycles. The fatigue cycles and failure modes were recorded. Besides, the value of the torque loss of the abutment screw, the difference between initial torque and post-load reverse torque, was calculated. The data were statistically analyzed. Morphologies of the abutment conical surface were examined by scanning electron microscopy. RESULTS: In group B and BTA, all samples passed the test (106 cycles). While, in group BT, all abutments generated rotation within 140 cycles, showing significant differences compared to the other two groups (p < 0.001). However, from SEM observations, both group B and BT showed marked fretting wear, indicating obvious micromotion in the connection. Whereas group BTA showed indentation of tight contact, attributed to the axial loading. In terms of the torque loss of the abutment screw, the torque loss in group BT was much more than the other two groups with statistically significant differences (p < 0.05). CONCLUSION: Owing to the effect of the bending moment, marked fretting wear was generated in the conical connections and further led to loss of the anti-torsional ability. However, adding an axial loading could improve their anti-torsional ability significantly.


Subject(s)
Materials Testing/methods , Mechanical Phenomena , Prostheses and Implants , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...