Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.435
Filter
1.
Clin Exp Med ; 24(1): 146, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960924

ABSTRACT

Despite being characterized by high malignancy, high morbidity, and low survival rates, the underlying mechanism of hepatocellular carcinoma (HCC) has not been fully elucidated. Ferroptosis, a non-apoptotic form of regulated cell death, possesses distinct morphological, biochemical, and genetic characteristics compared to other types of cell death. Dysregulated actions within the molecular network that regulates ferroptosis have been identified as significant contributors to the progression of HCC. Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, regulating gene function and expression through multiple mechanistic pathways. An increasing body of evidence indicates that deregulated lncRNAs are implicated in regulating malignant events such as cell proliferation, growth, invasion, and metabolism by influencing ferroptosis in HCC. Therefore, elucidating the inherent role of ferroptosis and the modulatory functions of lncRNAs on ferroptosis in HCC might promote the development of novel therapeutic interventions for this disease. This review provides a succinct overview of the roles of ferroptosis and ferroptosis-related lncRNAs in HCC progression and treatment, aiming to drive the development of promising therapeutic targets and biomarkers for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Humans , Ferroptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology
2.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966793

ABSTRACT

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

3.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966797

ABSTRACT

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

4.
Sci Rep ; 14(1): 15100, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956204

ABSTRACT

The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.


Subject(s)
Fluorine Radioisotopes , Histone Deacetylase Inhibitors , Radiopharmaceuticals , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Fluorine Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Drug Design , Humans , Radiochemistry/methods , Oxadiazoles/chemistry , Oxadiazoles/chemical synthesis
5.
Biomed Eng Online ; 23(1): 57, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902671

ABSTRACT

OBJECTIVE: Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets. METHODS: We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model's prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database. RESULTS: Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels. CONCLUSIONS: Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.


Subject(s)
Electrocardiography , Machine Learning , Signal Processing, Computer-Assisted , Sleep Apnea Syndromes , Humans , Male , Middle Aged , Sleep Apnea Syndromes/diagnosis , Female , Adult , Aged , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/physiopathology
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 789-793, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926968

ABSTRACT

OBJECTIVE: To investigate the relative expression level and clinical significance of LINC00475 in serum of patients with multiple myeloma (MM). METHODS: The expression of LINC00475 in serum of 108 MM patients and five MM cell lines including RPMI 8226, NCI-H929, U266, OPM2 and CAG were detected by real-time fluorescence quantitative PCR. The diagnostic value of LINC00475 in MM was evaluated by receiver operating characteristic (ROC) curve analysis. The correlation of LINC00475 with patients' characteristics was analyzed. RESULTS: Compared with control groups, the expression of LINC00475 was up-regulated in serum of MM patients and MM cell lines (all P < 0.05). ROC curve analysis showed that the optimal cut-off value of LINC00475 was 262.4, the area under curve (AUC) was 0.924(95%CI : 0.884-0.964), and sensitivity and specificity was 83.3% and 91.7%, respectively, which indicated that LINC00475 had good evaluation value in MM patients. Compared with low-LINC00475 expression group, patients in high-LINC00475 expression group had higher levels of ß2microglobulin (ß2-MG) and Cystatin C (Cys-C) but lower albumin (ALB) (all P < 0.05). Compared with MM patients with International Staging System (ISS) stage I, the expression level of LINC00475 was significantly higher in patients with stage II and III (both P < 0.05). CONCLUSION: LINC00475 is helpful to distinguish MM patients from healthy adults, which is correlated with the prognostic indicators such as ß2-MG, ALB, and ISS stage.


Subject(s)
Multiple Myeloma , RNA, Long Noncoding , Humans , Multiple Myeloma/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , beta 2-Microglobulin , ROC Curve , Clinical Relevance
7.
iScience ; 27(6): 109983, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38827404

ABSTRACT

Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.

8.
Article in English | MEDLINE | ID: mdl-38834757

ABSTRACT

PURPOSE: To study the effectiveness of federated learning in in vitro fertilization on embryo evaluation tasks. METHODS: This is a retrospective cohort analysis. Two datasets were used in this study. The ploidy status dataset consisted of 10,065 embryo records, 3760 treatments, and 2479 infertile couples from 5 hospitals. The clinical pregnancy dataset consisted of 4495 embryo records, 4495 treatments, and 3704 infertile couples from 4 hospitals. Federated learning and the gradient boosting decision tree algorithm were utilized for modeling. RESULTS: On the ploidy status dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 71.78%, 73.10%, 69.39%, 69.72%, and 73.46% for 5 hospitals respectively, showing an average increase of 2.5% compared to those of our model trained without federated learning. On the clinical pregnancy dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 72.03%, 56.77%, 61.63%, and 58.58% for 4 hospitals respectively, showing an average increase of 3.08%. CONCLUSIONS: Federated learning can improve data privacy and data security and meanwhile improve the performance of embryo selection tasks by leveraging data from multiple sources. This study demonstrates the effectiveness of federated learning in embryo evaluation, and the results show the promise for future application.

9.
Angew Chem Int Ed Engl ; : e202408321, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926096

ABSTRACT

exo-6b2-Methyl-substituted pentabenzocorannulene (exoPBC-Me) was synthesized by the palladium-catalyzed cyclization of 1,2,3-triaryl-1H-cyclopenta[l]phenanthrene. Its bowl-shaped geometry with an sp3 carbon atom in the backbone and a methyl group located at the convex (exo) face was verified by X-ray crystallography. According to DFT calculations, the observed conformer is energetically more favorable than the endo one by 39.9 kcal/mol. Compared to the nitrogen-doped analogs with intact π-conjugated backbones (see the main text), exo-PBC-Me displayed a deeper bowl depth (avg. 1.93 Å), redshifted and broader absorption (250-620 nm) and emission (from 585 to more than 850 nm) bands and a smaller optical HOMO-LUMO gap (2.01 eV). exo-PBC-Me formed polar crystals where all bowl-in-bowl stacking with close π···π contacts is arranged unidirectionally, providing the potential for applications as organic semiconductors and pyroelectric materials. This unusual structural feature, molecular packing, and properties are most likely associated with the assistance of the methyl group and the sp3 carbon atom in the backbone.

10.
Ann Acad Med Singap ; 53(1): 6-14, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38920210

ABSTRACT

Introduction: The most prevalent type of fragility fractures is osteoporotic vertebral fractures (OVFs). However, only a few studies have examined the relationship between anti-osteoporosis treatments and malignancy-related mortality following an OVF. The goal of this study is to determine the effect of anti-osteoporosis therapy on mortality in OVF patients with and without cancer. Method: Data from older people over the age of 65 who were hospitalised for OVFs between 1 January 2003 and 31 December 2018 were analysed retrospectively. A total of 6139 persons getting osteoporosis treatment and 28,950 who did not receive treatment were analysed, together with 2 sets of patients, comprising cancer patients (794) and cancer-free patients (5342), using anti-osteoporosis medication or not, in 1:1 propensity score-matched analyses. The hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Results: In all, 35,089 patients with OVFs were included in the population; 29,931 people (85.3%) were women, and the mean (standard deviation) age was 78.13 (9.27) years. Overall survival was considerably higher in those undergoing osteoporosis therapy. This was true both for those without cancer (adjusted HR 0.55; 95% CI 0.51-0.59; P<.0001) as well as those with cancer (adjusted HR 0.72; 95% CI 0.62-0.84; P<.0001). Even among cancer patients, those who received anti-osteoporotic drugs had a lower mortality rate than those who did not. Conclusion: Our findings suggest that anti-osteoporosis therapy should be initiated regardless of the presence of cancer in the elderly, as it increases survival following OVFs.


Subject(s)
Bone Density Conservation Agents , Neoplasms , Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Humans , Aged , Female , Male , Spinal Fractures/mortality , Neoplasms/mortality , Neoplasms/drug therapy , Neoplasms/complications , Aged, 80 and over , Osteoporotic Fractures/mortality , Osteoporotic Fractures/prevention & control , Retrospective Studies , Bone Density Conservation Agents/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/mortality , Singapore/epidemiology , Proportional Hazards Models , Propensity Score , Cohort Studies
11.
J Pers Med ; 14(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38929840

ABSTRACT

This study compared the therapeutic effects of engineered exosomes derived from RAW264.7 cells overexpressing hsa-let-7i-5p (engineered exosomes) to exosomes from human placenta-derived mesenchymal stem cells (hpMSC exosomes) against sepsis-induced acute lung injury. Adult male C57BL/6 mice were divided into lipopolysaccharide (LPS), LPS plus engineered exosome (LEExo), or LPS plus hpMSC exosome (LMExo) groups, alongside control groups. The results showed that lung injury scores (based on pathohistological characteristics) and the levels of lung function alterations, tissue edema, and leukocyte infiltration in LEExo and LMExo groups were comparable and significantly lower than in the LPS group (all p < 0.05). Furthermore, the levels of inflammation (nuclear factor-κB activation, cytokine upregulation), macrophage activation (hypoxia-inducible factor-1α activation, M1 phase polarization), oxidation, and apoptosis were diminished in LEExo and LMExo groups compared to the LPS group (all p < 0.05). Inhibition of hsa-let-7i-5p attenuated the therapeutic effects of both engineered and hpMSC exosomes. These findings underscore the potent therapeutic capacity of engineered exosomes enriched with hsa-let-7i-5p and their potential as an alternative to hpMSC exosomes for sepsis treatment. Continued research into the mechanisms of action and optimization of engineered exosomes could pave the way for their future clinical application.

12.
Nat Commun ; 15(1): 5461, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937433

ABSTRACT

Peptidoglycan (PG) sacculi surround the cytoplasmic membrane, maintaining cell integrity by withstanding internal turgor pressure. During cell growth, PG endopeptidases cleave the crosslinks of the fully closed sacculi, allowing for the incorporation of new glycan strands and expansion of the peptidoglycan mesh. Outer-membrane-anchored NlpI associates with hydrolases and synthases near PG synthesis complexes, facilitating spatially close PG hydrolysis. Here, we present the structure of adaptor NlpI in complex with the endopeptidase MepS, revealing atomic details of how NlpI recruits multiple MepS molecules and subsequently influences PG expansion. NlpI binding elicits a disorder-to-order transition in the intrinsically disordered N-terminal of MepS, concomitantly promoting the dimerization of monomeric MepS. This results in the alignment of two asymmetric MepS dimers respectively located on the two opposite sides of the dimerization interface of NlpI, thus enhancing MepS activity in PG hydrolysis. Notably, the protein level of MepS is primarily modulated by the tail-specific protease Prc, which is known to interact with NlpI. The structure of the Prc-NlpI-MepS complex demonstrates that NlpI brings together MepS and Prc, leading to the efficient MepS degradation by Prc. Collectively, our results provide structural insights into the NlpI-enabled avidity effect of cellular endopeptidases and NlpI-directed MepS degradation by Prc.


Subject(s)
Endopeptidases , Lipoproteins , Peptidoglycan , Peptidoglycan/metabolism , Endopeptidases/metabolism , Endopeptidases/chemistry , Lipoproteins/metabolism , Lipoproteins/chemistry , Protein Binding , Protein Multimerization , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Models, Molecular , Crystallography, X-Ray , Hydrolysis , Escherichia coli/metabolism
13.
Diagnostics (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928658

ABSTRACT

BACKGROUND: The Stress Index (SI), calculated as the ratio of blood glucose to serum potassium levels, is a promising prognostic marker in various acute care settings. This study aimed to evaluate the utility of the SI for predicting mortality in patients with isolated moderate-to-severe traumatic brain injury (TBI). METHODS: This retrospective cohort study included adult trauma patients (aged ≥ 20 years) with isolated moderate to severe TBI (Abbreviated Injury Scale ≥ 3 for only head region) treated from 2009-2022. The SI was computed from the initial glucose and potassium levels upon arrival at the emergency department. Logistic regression models were used to assess the association between the SI and mortality after adjusting for relevant covariates. The most effective threshold value of the SI for predicting mortality was identified using receiver operating characteristic (ROC) analysis. RESULTS: Among the 4357 patients with isolated moderate and severe TBI, 463 (10.6%) died. Deceased patients had a significantly higher SI (61.7 vs. 44.1, p < 0.001). In multivariate analysis, higher SI independently predicted greater mortality risk (odds ratio (OR) 6.70, 95% confidence interval (CI) 1.66-26.99, p = 0.007). The optimal SI cutoff for predicting mortality was 48.50 (sensitivity 62.0%, specificity 71.4%, area under the curve 0.724). Patients with SI ≥ 48.5 had nearly two-fold higher adjusted mortality odds compared to those below the threshold (adjusted OR 1.94, 95% CI 1.51-2.50, p < 0.001). CONCLUSIONS: SI is a useful predictor of mortality in patients with isolated moderate-to-severe TBI. Incorporating SI with standard clinical assessments could enhance risk stratification and management approaches for this patient population.

14.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928854

ABSTRACT

Yak milk, known as the "liquid gold", is a nutritious food with extensive consumption. Compared with cow milk, yak milk contains higher levels of nutrients such as dry matter, milk fat, and milk protein, which demonstrates great potential for exploitation and utilization. Protein kinase cGMP-dependent 1 (PRKG1) is an important functional molecule in the cGMP signaling pathway, and its significant influence on milk fatty acids has been discovered. The aim of this study is to explore the correlation between single nucleotide polymorphisms (SNPs) in the PRKG1 gene and the quality traits of Gannan yak milk in order to identify candidate molecular markers for Gannan yak breeding. In this study, genotyping was performed on 172 healthy, 4-5-year-old lactating Gannan yaks with similar body types, naturally grazed, and two to three parity. Three SNPs (g.404195C>T, g.404213C>T, and g.760138T>C) were detected in the PRKG1 gene of Gannan yaks, which were uniformly distributed in the yak population. Linkage disequilibrium analysis was conducted, revealing complete linkage disequilibrium between g.404195C>T and g.404213C>T. After conducting a correlation analysis between SNPs in the PRKG1 gene and milk quality in Gannan yaks, we found that PRKG1 SNPs significantly increased the content of casein, protein, and SNFs in yak milk. Among them, the TT homozygous genotype at the PRKG1 g.404195C>T loci exhibited higher casein and protein contents compared to the CC and CT genotypes (p < 0.05). The SNP g.760138T>C locus was associated with casein, protein, SNFs, and TS traits (p < 0.05). The CC genotype had higher casein and protein contents than the TT and TA genotypes (p < 0.05). However, there were no significant differences in milk fat, lactose, and acidity among the three genotypes (p > 0.05). In summary, PRKG1 gene polymorphism can serve as a candidate molecular marker for improving milk quality in Gannan yaks.

15.
IEEE Open J Eng Med Biol ; 5: 434-442, 2024.
Article in English | MEDLINE | ID: mdl-38899022

ABSTRACT

Goal: Diagnosing the corpus-predominant gastritis index (CGI) which is an early precancerous lesion in the stomach has been shown its effectiveness in identifying high gastric cancer risk patients for preventive healthcare. However, invasive biopsies and time-consuming pathological analysis are required for the CGI diagnosis. Methods: We propose a novel gastric section correlation network (GSCNet) for the CGI diagnosis from endoscopic images of three dominant gastric sections, the antrum, body and cardia. The proposed network consists of two dominant modules including the scaling feature fusion module and section correlation module. The front one aims to extract scaling fusion features which can effectively represent the mucosa under variant viewing angles and scale changes for each gastric section. The latter one aims to apply the medical prior knowledge with three section correlation losses to model the correlations of different gastric sections for the CGI diagnosis. Results: The proposed method outperforms competing deep learning methods and achieves high testing accuracy, sensitivity, and specificity of 0.957, 0.938 and 0.962, respectively. Conclusions: The proposed method is the first method to identify high gastric cancer risk patients with CGI from endoscopic images without invasive biopsies and time-consuming pathological analysis.

16.
Sports Med ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878117

ABSTRACT

Most resistance training research focuses on inference from average intervention effects from observed group-level change scores (i.e., mean change of group A vs group B). However, many practitioners are more interested in training responses (i.e., causal effects of an intervention) on the individual level (i.e., causal effect of intervention A vs intervention B for individual X). To properly examine individual response variation, multiple confounding sources of variation (e.g., random sampling variability, measurement error, biological variability) must be addressed. Novel study designs where participants complete both interventions and at least one intervention twice can be leveraged to account for these sources of variation (i.e., n of 1 trials). Specifically, the appropriate statistical methods can separate variability into the signal (i.e., participant-by-training interaction) versus the noise (i.e., within-participant variance). This distinction can allow researchers to detect evidence of individual response variation. If evidence of individual response variation exists, researchers can explore predictors of the more favorable intervention, potentially improving exercise prescription. This review outlines the methodology necessary to explore individual response variation to resistance training, predict favorable interventions, and the limitations thereof.

17.
Clin Pharmacol Ther ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880970

ABSTRACT

Sacubitril/valsartan (Entresto) has proven therapeutic effects in heart failure (HF) patients, but its impact on those with advanced chronic kidney disease (CKD) remains unclear, particularly in HF patients with coexisting end-stage renal disease (ESRD). This study aims to assess the long-term survival of patients with heart failure with reduced ejection fraction (HFrEF) and coexisting ESRD treated with sacubitril/valsartan. A retrospective cohort study included 2,860 HFrEF and ESRD patients between January 2008 and December 2020. After propensity score matching, data from a sacubitril/valsartan group (n = 61) and a candesartan or valsartan group (n = 117) were analyzed. Patients on sacubitril/valsartan for at least 9 months had significantly lower 5-year all-cause mortality (39.3%) compared with the non-sacubitril/valsartan group (54.7%) (HR 0.46; 95% CI, 0.25-0.82; P = 0.0094). Left ventricular ejection fraction (LVEF) improvement after 3 years in the sacubitril/valsartan group (14.51 ±18.98) was significantly greater than the non-sacubitril/valsartan group (6.91 ±18.44) (P = 0.0408). Average hospitalizations in sacubitril/valsartan and non-sacubitril/valsartan groups were 1.39 and 0.97, respectively (incidence rate ratio, 1.59; 95% CI, 0.90-2.82; P = 0.1106). Sacubitril/valsartan treatment demonstrated significantly lower 5-year mortality rates and greater LVEF improvement in HFrEF patients with coexisting ESRD compared with candesartan or valsartan. These findings suggest that sacubitril/valsartan is a beneficial treatment option for this patient population.

18.
Sci Rep ; 14(1): 14020, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890408

ABSTRACT

The study assessed the impact of procedural errors on the remote dielectric sensing system (ReDS), a non-invasive lung fluid assessment technology, in an Asian cohort. Healthy volunteers underwent ReDS measurements following manufacturer's instructions, with two consecutive measurements one minute apart. A subset of 20 participants had modified procedure settings. Reliability was measured using intraclass correlation coefficient (ICC). The study included 86 healthy volunteers, and all ReDS measurements fell within the recommended normal range. The intra-rater reliability of ReDS measurements was excellent, with an ICC of 0.968. Among the subset of 20 subjects, deviations in height and weight did not significantly affect ReDS values. However, deviations in chest size by ± 3 cm had a noticeable impact on ReDS measures, and incorrect station selection led to fluctuations in ReDS readings. In conclusion, the ReDS system demonstrated excellent intra-rater reliability and applicability in an Asian cohort. Procedural errors, such as chest size measurement and station selection, significantly influenced ReDS measurements. Adherence to standardized operating procedures is crucial to ensure accurate and consistent results. These findings highlight the importance of adherence to manufacturer instructions when utilizing ReDS for lung fluid assessment, thereby enhancing its reliability and clinical applicability.


Subject(s)
Lung , Humans , Male , Female , Adult , Lung/physiology , Reproducibility of Results , Remote Sensing Technology/methods , Healthy Volunteers , Young Adult , Middle Aged , Body Fluids , Electric Impedance
19.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891936

ABSTRACT

Circadian rhythms are essential regulators of a multitude of physiological and behavioral processes, such as the metabolism and function of the liver. Circadian rhythms are crucial to liver homeostasis, as the liver is a key metabolic organ accountable for the systemic equilibrium of the body. Circadian rhythm disruption alone is sufficient to cause liver cancer through the maintenance of hepatic metabolic disorder. Although there is evidence linking CRD to hepatocarcinogenesis, the precise cellular and molecular mechanisms that underlie the circadian crosstalk that leads to hepatocellular carcinoma remain unknown. The expression of CRD-related genes in HCC was investigated in this study via bulk RNA transcriptomic analysis and single-cell sequencing. Dysregulated CRD-related genes are predominantly found in hepatocytes and fibroblasts, according to the findings. By using a combination of single-cell RNA sequencing and bulk RNA sequencing analyses, the dysregulated CRD-related genes ADAMTS13, BIRC5, IGFBP3, MARCO, MT2A, NNMT, and PGLYRP2 were identified. The survival analysis using the Kaplan-Meier method revealed a significant correlation between the expression levels of BIRC5 and IGFBP3 and the survival of patients diagnosed with HCC.


Subject(s)
Carcinoma, Hepatocellular , Circadian Rhythm , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Sequence Analysis, RNA , Single-Cell Analysis , Survivin , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Circadian Rhythm/genetics , Survivin/genetics , Survivin/metabolism , Gene Expression Profiling , Transcriptome , Insulin-Like Growth Factor Binding Protein 3
20.
Langmuir ; 40(25): 13236-13246, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38864376

ABSTRACT

A biocompatible and antifouling polymeric medical coating was developed through rational design for anchoring pendant groups for the modification of stainless steel. Zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized individually with three anchoring monomers of carboxyl acrylamides with different alkyl spacers, including acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). The carboxylic acid groups are responsible for the stable grafting of copolymers onto stainless steel via a coordinative interaction with metal oxides. Due to hydrophobic interaction and hydrogen bonding, the anchoring monomers enable the formation of self-assembling structures in solution and at a metallic interface, which can play an important role in the thin film formation and functionality of the coatings. Therefore, surface characterizations of anchoring monomers on stainless steel were conducted to analyze the packing density and strength of the intermolecular hydrogen bonds. The corresponding copolymers were synthesized, and their aggregate structures were assessed, showing micelle aggregation for copolymers with higher hydrophobic compositions. The synergistic effects of inter/intramolecular interactions and hydrophobicity of the anchoring monomers result in the diversity of the thickness, surface coverage, wettability, and friction of the polymeric coatings on stainless steel. More importantly, the antifouling properties of the coatings against bacteria and proteins were strongly correlated to thin film formation. Ultimately, the key lies in deciphering the molecular structure of the anchoring pendants in thin film formation and assessing the effectiveness of the coatings, which led to the development of medical coatings through the graft-onto approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...