Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316711

ABSTRACT

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Subject(s)
Antioxidants , Biosensing Techniques , Peroxidase , Hydrogen Peroxide/analysis , Zirconium , Carbon , Electrodes , Peroxidases , Oxygen , Tea , Biosensing Techniques/methods , Electrochemical Techniques/methods
2.
EClinicalMedicine ; 51: 101497, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35844773

ABSTRACT

Background: Diabetic foot and leg ulcers are a major cause of disability among patients with diabetes mellitus. A topical gel called ENERGI-F703, applied twice daily and with adenine as its active pharmaceutical ingredient, accelerated wound healing in diabetic mice. The current study evaluated the safety and efficacy of ENERGI-F703 for patients with diabetic foot and leg ulcers. Methods: This randomized, double-blind, multicenter, phase II trial recruited patients from eight medical centers in Taiwan. Patients with intractable diabetic foot and leg ulcers (Wagner Grade 1-3 without active osteomyelitis) were randomly assigned (2:1) to receive topical ENERGI-F703 gel or vehicle gel twice daily for 12 weeks or until complete ulcer closure. The investigator, enrolled patients and site personnel were masked to treatment allocation. Intention to treat (ITT) population and safety population were patient to primary analyses and safety analyses, respectively. Primary outcome was complete ulcer closure rate at the end of treatment. This trial is registered with ClinicalTrials.gov, number NCT02672436. Findings: Starting from March 15th, 2017 to December 26th, 2019, 141 patients were enrolled as safety population and randomized into ENERGI-F703 gel (n = 95) group or vehicle gel (n = 46) group. In ITT population, ENERGI-F703 (n = 90) and vehicle group showed ulcer closure rates of 36.7% (95% CI = 26.75% - 47.49%) and 26.2% (95% CI = 13.86% - 42.04%) with difference of 9.74 % (95 % CI = -6.74% - 26.23%) and 25% quartiles of the time to complete ulcer closure of 69 days and 84 days, respectively. There were 25 (26.3%) patients in ENERGI-F703 group and 11 (23.9%) patients in vehicle group experiencing serious adverse events and five deaths occurred during the study period, none of them related to the treatment. Interpretation: Our study suggests that ENERGI-F703 gel is a safe and well-tolerated treatment for chronic diabetic foot and leg ulcers. Further studies are needed to corroborate our findings in light of limitations. Funding: Energenesis Biomedical Co., Ltd.

3.
Mol Biol Cell ; 31(21): 2348-2362, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32755434

ABSTRACT

ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1-p150 association at the centrosome.


Subject(s)
ADP-Ribosylation Factors/metabolism , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , ADP-Ribosylation Factors/physiology , Animals , COS Cells , Chlorocebus aethiops/metabolism , Chlorocebus aethiops/physiology , Humans , Mice , Microtubule-Associated Proteins/physiology
4.
Sci Rep ; 9(1): 19065, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836734

ABSTRACT

The acute phase response (APR) is a systemic first-line defense against challenges including infection, trauma, stress, and neoplasia. Alteration of acute phase protein (APP) levels in plasma is the most important change during acute phase response. C-reactive protein (CRP), which increases dramatically during inflammation onset, is an indicator of inflammation. To monitor the process of APR, we generated human CRP promoter-driven luciferase transgenic (hCRP-Luc) mice to quantify the hCRP promoter activation in vivo. The naïve female hCRP-Luc mice express low basal levels of liver bioluminescence, but the naïve male hCRP-Luc mice do not. Thus, female hCRP-Luc mice are suitable for monitoring the process of APR. The liver bioluminescence of female hCRP-Luc mice can be induced by several toll-like receptor (TLR) ligands. The expression of liver bioluminescence was highly sensitive to endotoxin stimulation in a dose-dependent manner. On-off-on bioluminescence response was noted in female hCRP-Luc mice upon two endotoxin stimulations one month apart. The LPS-induced bioluminescence of the female hCRP-Luc mice was IL-6-mediated and associated with APP alpha-1-acid glycoprotein expression. In conclusion, the female hCRP-Luc mouse is a non-invasive, sensitive and reusable reporter tool for APR.


Subject(s)
Acute-Phase Reaction/metabolism , Genes, Reporter , Toll-Like Receptors/metabolism , Acute-Phase Proteins/metabolism , Animals , Base Sequence , C-Reactive Protein/metabolism , Female , Gonadal Steroid Hormones/pharmacology , Humans , Interleukin-6/metabolism , Ligands , Lipopolysaccharides/pharmacology , Luciferases/metabolism , Luminescence , Male , Mice, Inbred C57BL , Mice, Transgenic
5.
Arch Virol ; 162(3): 823-833, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27858288

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most devastating swine diseases worldwide, resulting in immense economic losses. PRRS virus (PRRSV) is divided into two major genotypes, European (type 1) and the North American (type 2). Type 1 PRRSV have recently emerged in Fujian province (South China), and this might have a significant impact on the Chinese pig industry. From 2013 to 2014, two type 1 PRRSV strains, named FJEU13 and FJQEU14, were isolated from piglets and sows with respiratory problems and reproductive disorders in Fujian province. The full genome length of the two isolates was 14,869-15,062 nucleotides (nt), excluding the poly(A) tail. These isolates shared 86.0-89.9% sequence identity with the prototypic strains Lelystad virus (LV) and 82.8-92% with Chinese type 1 PRRSV strains, but only 59.9-60.1% with the North American reference strain VR-2332. However, they were 82.9% identical to each other. Nonstructural protein 2 (Nsp2) and ORF3-ORF5 were the most variable regions when compared to other type 1 PRRSV strains. Nsp2 and ORF3 contained multiple discontinuous deletions and a 204-bp deletion in NSP2 in isolate FJQEU14, which has never been described in other Chinese type 1 PRRSV strains. All of these results might be useful for understanding the epidemic status of type 1 PRRSV in China.


Subject(s)
Genome, Viral , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/isolation & purification , Amino Acid Sequence , Animals , China , Genetic Variation , Genomics , Genotype , Molecular Sequence Data , Open Reading Frames , Phylogeny , Porcine respiratory and reproductive syndrome virus/chemistry , Porcine respiratory and reproductive syndrome virus/classification , RNA, Viral/genetics , Sequence Alignment , Swine , Viral Proteins/chemistry , Viral Proteins/genetics
6.
Adv Healthc Mater ; 5(19): 2545-2554, 2016 10.
Article in English | MEDLINE | ID: mdl-27448287

ABSTRACT

This study reports a two-step method to synthesize spermidine-capped fluorescent carbon quantum dots (Spd-CQDs) and their potential application as an antibacterial agent. Fluorescent carbon quantum dots (CQDs) are synthesized by pyrolysis of ammonium citrate in the solid state and then modified with spermidine by a simple heating treatment without a coupling agent. Spermidine, a naturally occurring polyamine, binds with DNA, lipids, and proteins involved in many important processes within organisms such as DNA stability, and cell growth, proliferation, and death. The antimicrobial activity of the as-synthesized Spd-CQDs (size ≈4.6 nm) has been tested against non-multidrug-resistant E. coli, S. aureus, B. subtilis, and P. aeruginosa bacteria and also multidrug-resistant bacteria, methicillin-resistant S. aureus (MRSA). The minimal inhibitory concentration value of Spd-CQDs is much lower (>25 000-fold) than that of spermidine, indicating their promising antibacterial characteristics. The mechanism of antibacterial activity is investigated, and the results indicate that Spd-CQDs cause significant damage to the bacterial membrane. In vitro cytotoxicity and hemolysis analyses reveal the high biocompatibility of Spd-CQDs. To demonstrate its practical application, in vitro MRSA-infected wound healing studies in rats have been conducted, which show faster healing, better epithelialization, and formation of collagen fibers when Spd-CQDs are used as a dressing material.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Quantum Dots/chemistry , Spermidine/chemistry , Spermidine/pharmacology , A549 Cells , Animals , Citric Acid/chemistry , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Male , Microbial Sensitivity Tests/methods , Polyamines/chemistry , Quaternary Ammonium Compounds/chemistry , Rats , Rats, Sprague-Dawley
7.
Anal Chim Acta ; 871: 28-34, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25847158

ABSTRACT

Herein, we combine the advantage of aptamer technique with the amplifying effect of an enzyme-free signal-amplification and Au nanoparticles (NPs) to design a sensitive surface plasmon resonance (SPR) aptasensor for detecting small molecules. This detection system consists of aptamer, detection probe (c-DNA1) partially hybridizing to the aptamer strand, Au NPs-linked hairpin DNA (Au-H-DNA1), and thiolated hairpin DNA (H-DNA2) previously immobilized on SPR gold chip. In the absence of target, the H-DNA1 possessing hairpin structure cannot hybridize with H-DNA2 and thereby Au NPs will not be captured on the SPR gold chip surface. Upon addition of target, the detection probe c-DNA1 is forced to dissociate from the c-DNA1/aptamer duplex by the specific recognition of the target to its aptamer. The released c-DNA1 hybridizes with Au-H-DNA1 and opens the hairpin structure, which accelerate the hybridization between Au-H-DNA1 and H-DNA2, leading to the displacement of the c-DNA1 through a branch migration process. The released c-DNA1 then hybridizes with another Au-H-DNA1 probe, and the cycle starts anew, resulting in the continuous immobilization of Au-H-DNA1 probes on the SPR chip, generating a significant change of SPR signal due to the electronic coupling interaction between the localized surface plasma of the Au NPs and the surface plasma wave. With the use of adenosine as a proof-of-principle analyte, this sensing platform can detect adenosine specifically with a detection limit as low as 0.21 pM, providing a simple, sensitive and selective protocol for small target molecules detection.


Subject(s)
Adenosine/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Adenosine/blood , Gold , Humans , Limit of Detection , Metal Nanoparticles , Surface Plasmon Resonance
8.
J Proteomics ; 120: 204-14, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25797921

ABSTRACT

AMP-activated protein kinase (AMPK) is a metabolic master switch maintaining the energy homeostasis in cells and thought to modulate cellular response to stresses. Adenine as well as a pharmacological AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), induced the phosphorylation of AMPK and acetyl-CoA carboxylase in NIH/3T3 cells. Administration of adenine or AICAR increased the expression and translocation of glucose transporter 4, enhanced the cellular glucose uptake, and elevated the intracellular ATP level. To better understand the proteomic changes in response to exogenous adenine treatment, we performed two-dimensional difference gel electrophoresis (2DE-DIGE) and grouped protein spots with similar intensities prior to MS analysis. These process allowed us to exclude these constant expressed proteins, reduce the coverage from abundant signals and increase the identification of middle/lower expressed proteins. Bioinformatics analysis on the proteomic alterations suggested that both of adenine and AICAR could induce up-regulation of a panel of proteins associated with glucose metabolism. We also found that adenine upregulated expression of the glycolytic enzyme, hexokinase 2, indicating a link between adenine and AMPK-mediated glycolysis. Taken together, by demonstrating the adenine-mediated proteome changes in NIH/3T3 cells, our study provides useful information for the characteristics of adenine-induced AMPK activation and development of efficient AMPK activator. BIOLOGICAL SIGNIFICANCE: AMPK is a fuel sensing enzyme that responds to a central role of energy homeostasis and contributes to the acceleration of insulin signaling. Recently, we have shown that exogenous adenine exerted anti-inflammatory effects through activation of AMPK, suggesting the treatment is a potent therapeutic strategy against hyperglycemia. Adenine had similar effects with 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) in modulating glucose uptake via AMPK-mediated signaling. In this study, we performed a 2DE-DIGE/MS-based approach to investigate the mechanism of exogenous adenine in NIH/3T3 cells. Our results provide evidence of a novel role for adenine in AMPK-mediated signaling and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.


Subject(s)
AMP-Activated Protein Kinases/pharmacology , AMP-Activated Protein Kinases/pharmacokinetics , Adenine/metabolism , Gene Expression Regulation, Enzymologic/physiology , Glucose/pharmacokinetics , Proteome/metabolism , Animals , Enzyme Activation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Mice , NIH 3T3 Cells
9.
Anal Chem ; 87(2): 929-36, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25494977

ABSTRACT

An ultrasensitive protocol for surface plasma resonance (SPR) detection of adenosine is designed with the aptamer-based target-triggering cascade multiple cycle amplification, and streptavidin-coated Au-NPs (Au NPs-SA) enhancement to enhance the SPR signals. The cascade amplification process consists of the aptamer-based target-triggering nicking enzyme signaling amplification (T-NESA), the nicking enzyme signaling amplification (NESA) and the hybridization chain reaction (HCR), the entire circle amplification process is triggered by the target recognition of adenosine. Upon recognition of the aptamer to target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1). The DNA s1 can be dissociated from HP1 under the reaction of nicking endonuclease to initiate the next hybridization and cleavage process. Moreover, the products of the upstream cycle (T-NESA) (DNA s2 and s3) could act as the "DNA trigger" of the downstream cycle (NESA and HCR) to generate further signal amplification, resulting in the immobilization of abundant Au NPs-SA on the gold substrate, and thus significant SPR enhancement is achieved due to the electronic coupling interaction between the localized surface plasma of Au NPs and the surface plasma wave. This detection method exhibits excellent specificity and sensitivity toward adenosine with a detection limit of 4 fM. The high sensitivity and specificity make this method a great potential for detecting biomolecules with trace amounts in bioanalysis and clinical biomedicine.


Subject(s)
Adenosine/blood , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Humans , Limit of Detection , Nucleic Acid Hybridization
10.
Biomed Res Int ; 2014: 692061, 2014.
Article in English | MEDLINE | ID: mdl-25025067

ABSTRACT

Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis via modulating metabolism of glucose, lipid, and protein. In addition to energy modulation, AMPK has been demonstrated to associate with several important cellular events including inflammation. The results showed that ENERGI-F704 identified from bamboo shoot extract was nontoxic in concentrations up to 80 µM and dose-dependently induced phosphorylation of AMPK (Thr-172) in microglia BV2 cells. Our findings also showed that the treatment of BV2 with ENERGI-F704 ameliorated the LPS-induced elevation of IL-6 and TNF-α production. In addition, ENERGI-F704 reduced increased production of nitric oxide (NO) and prostaglandin E2 (PGE2) via downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. Moreover, ENERGI-F704 decreased activated nuclear translocation and protein level of NF-κB. Inhibition of AMPK with compound C restored decreased NF-κB translocation by ENERGI-F704. In conclusion, ENERGI-F704 exerts inhibitory activity on LPS-induced inflammation through manipulating AMPK signaling and exhibits a potential therapeutic agent for neuroinflammatory disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism/drug effects , Inflammation/drug therapy , Transcriptional Activation/drug effects , Cell Line , Dinoprostone/biosynthesis , Energy Metabolism/genetics , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/toxicity , Microglia/cytology , Microglia/drug effects , Nitric Oxide/biosynthesis , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Sasa/chemistry
11.
Anal Chem ; 85(24): 11944-51, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24261416

ABSTRACT

We reported here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy integrated with a surface molecular imprinting recognition system and employing magnetic molecular imprinting polymer nanoparticles for amplifying SPR response. The proposed magnetic molecular imprinting polymer was designed by self-polymerization of dopamine on the Fe3O4 NPs surface in weak base aqueous solution in the presence of template chlorpyrifos (CPF). The imprinted Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) were characterized by Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, and transmission electron microscopy. The biosensor showed a good linear relationship between the SPR angle shift and the chlorpyrifos concentration over a range from 0.001 to 10 µM with a detection limit of 0.76 nM. A significant increase in sensitivity was therefore afforded through the use of imprinted Fe3O4@PDA NPs as an amplifier, and meanwhile, the imprinted Fe3O4@PDA NPs had an excellent recognition capacity to chlorpyrifos over other pesticides. The excellent sensitivity and selectivity and high stability of the designed biosensor make this magnetic imprinted Fe3O4@PDA NP an attractive recognition element for various SPR sensors for detecting pesticide residuals and other environmentally deleterious chemicals.

12.
PLoS One ; 8(9): e74715, 2013.
Article in English | MEDLINE | ID: mdl-24019977

ABSTRACT

Vps74p is a member of the PtdIns(4)P-binding protein family. Vps74p interacts with Golgi-resident glycosyltransferases and the coat protein COPI complex to modulate Golgi retention of glycosyltransferases and with the PtdIns(4)P phosphatase Sac1p to modulate PtdIns(4)P homeostasis at the Golgi. Genetic analysis has shown that Vps74p is required for the formation of abnormal elongated buds in cdc34-2 cells. The C-terminal region of Vps74p is required for Vps74p multimerization, Golgi localization, and glycosyltransferase interactions; however, the functional significance of the N-terminal region and three putative phosphorylation sites of Vps74p have not been well characterized. In this study, we demonstrate that Vps74p executes multiple cellular functions using different domains. We found that the N-terminal 66 amino acids of Vps74p are dispensable for its Golgi localization and modulation of cell wall integrity but are required for glycosyltransferase retention and glycoprotein processing. Deletion of the N-terminal 90 amino acids, but not the 66 amino acids, of Vps74p impaired its ability to restore the elongated bud phenotype in cdc34-2/vps74Δ cells. Deletion of Sac1p and Arf1p also specifically reduced the abnormal elongated bud phenotype in cdc34-2 cells. Furthermore, we found that three N-terminal phosphorylation sites contribute to rapamycin hypersensitivity, although these phosphorylation residues are not involved in Vps74p localization, ability to modulate glycosyltransferase retention, or elongated bud formation in cdc34-2 cells. Thus, we propose that Vps74p may use different domains to interact with specific effectors thereby differentially modulating a variety of cellular functions.


Subject(s)
Carrier Proteins/physiology , Glycosyltransferases/metabolism , Golgi Apparatus/enzymology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/growth & development , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Phosphorylation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology
13.
Biosens Bioelectron ; 50: 305-10, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23876541

ABSTRACT

Carbohydrate-protein interactions mediate the important physiological and pathophysiological processes in living organism. Their study has attracted great attention due to its importance in understanding these biological processes and in fabricating biosensors for diagnostics and drug development. Here, by using concanavalin A (ConA) as a model protein, a novel surface plasmon resonance (SPR) sensor was developed for sensitive detection ConA. In this sensing platform, dextran (Dex) capped gold nanoparticles (Dex-Au NPs) were initially synthesized in one-pot and utilized as amplification reagent. After deposition of graphene oxide (GO) on the SPR gold film, phenoxy-derivatized dextran (DexP) was assembled onto the GO-modified gold chip surface through π-π interaction. The resultant GO/DexP sensing interface could specifically capture ConA which could further react with Dex-Au NPs through the specific interaction between ConA and Dex, forming a sandwich configuration. The morphologies and the electrochemistry of the formed sensing surface were investigated by using scanning electron microscopy and electrochemical techniques including electrochemical impedance spectroscopy and cyclic voltammogram. Owing to the high surface area of GO and the excellent amplification of Dex-Au NPs, the developed sandwich SPR sensor successfully fulfilled the sensitive detection of ConA in the range of 1.0-20.0 µg mL(-1) with a detection limit of 0.39 µg mL(-1). Compared to the direct assay format, the prepared sandwich SPR sensor led to an improvement of 28.7-fold in the sensitivity. The results demonstrated that the proposed method might provide a new direction in designing high-performance SPR biosensors for sensitive and selective detection of a wide spectrum of biomolecules.


Subject(s)
Concanavalin A/analysis , Dextrans/chemistry , Graphite/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Gold/chemistry , Limit of Detection , Nanoparticles/chemistry , Oxides/chemistry
14.
PLoS One ; 8(6): e65235, 2013.
Article in English | MEDLINE | ID: mdl-23776455

ABSTRACT

Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Axonal Transport/drug effects , Nerve Degeneration/pathology , Superoxide Dismutase/toxicity , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Axonal Transport/physiology , Decapodiformes , Immunohistochemistry , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Mass Spectrometry , Mice , Mutation/genetics , Phosphorylation , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
15.
PLoS One ; 7(8): e43552, 2012.
Article in English | MEDLINE | ID: mdl-22927989

ABSTRACT

ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.


Subject(s)
ADP-Ribosylation Factors/metabolism , Guanosine Triphosphate/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , ADP-Ribosylation Factors/chemistry , ADP-Ribosylation Factors/genetics , Animals , Apoptosis , COS Cells , Cell Proliferation , Cell Survival , Chlorocebus aethiops , HeLa Cells , Humans , Mutation , Nuclear Localization Signals , Protein Processing, Post-Translational , Protein Transport
16.
Cold Spring Harb Protoc ; 2012(3): 312-8, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22383651

ABSTRACT

Dissociated cell cultures of the rodent hippocampus have become a standard model for studying many facets of neural development, including the development of polarity, axonal and dendritic growth, and synapse formation. The cultures are quite homogeneous--∼90% of the cells are pyramidal neurons--and it is relatively easy to express green fluorescent protein (GFP)-tagged proteins by transfection. This article describes the cultures and the key features of the system used to image them. It also includes suggestions on labeling cells with GFP-tagged proteins. It concludes with a discussion of the advantages and disadvantages of this culture system.


Subject(s)
Cytological Techniques/methods , Hippocampus/cytology , Neurons/physiology , Animals , Cells, Cultured , Mice , Microscopy, Fluorescence/methods , Rats , Time-Lapse Imaging/methods
17.
Cold Spring Harb Protoc ; 2012(3): 335-9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22383652

ABSTRACT

Dissociated cell cultures of the rodent hippocampus have become a standard model for studying many facets of neural development. The cultures are quite homogeneous and it is relatively easy to express green fluorescent protein (GFP)-tagged proteins by transfection. Studying developmental processes that occur over many hours or days--for example, dendritic branching--involves capturing images of a cell at regular intervals without compromising cell survival. This approach is also useful for studying events of short duration that occur asynchronously across the cell population. For such studies, it is highly desirable to use a computer-controlled microscope with an automated stage, to follow multiple cells at different locations in the culture, moving sequentially from one to the next and capturing an image at each location. A method to correct for focal drift is also required. For long-term imaging, we culture neurons in a medium without phenol red, which is thought to give rise to toxic substances following exposure to light. To label cells with GFP-tagged proteins for long-term imaging, we usually use nucleofection (rather than lipid-mediated transfection); this gives a high transfection efficiency, which makes it easier to find the right cell for imaging. Our protocol for long-term imaging is given here, along with appropriate methods to express GFP-tagged proteins. Examples illustrate how the protocol can be used to image cytoskeletal dynamics during axon specification and to study kinesin motor dynamics in stage 2 neurons (when minor neurites extend).


Subject(s)
Cytological Techniques/methods , Hippocampus/cytology , Microscopy, Fluorescence/methods , Neurons/physiology , Time-Lapse Imaging/methods , Animals , Cell Culture Techniques/methods , Cells, Cultured , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Rats , Staining and Labeling/methods
18.
Cold Spring Harb Protoc ; 2012(3): 340-3, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22383653

ABSTRACT

Dissociated cell cultures of the rodent hippocampus have become a standard model for studying many facets of neural development. The cultures are quite homogeneous and it is relatively easy to express green fluorescent protein (GFP)-tagged proteins by transfection. Because the cultures are essentially two dimensional, there is no need to acquire images at multiple focal planes. For capturing rapid subcellular events at high resolution, as described here, one must maximize weak signals and reduce background fluorescence. Thus, these methods differ in several respects from those used for time-lapse imaging. Lipofectamine-mediated transfection yields a higher level of expression than does transfection with a nucleofection device. Images are usually collected with a spinning-disk confocal microscope, which improves the signal-to-noise ratio. In addition, we use an imaging medium designed to minimize background fluorescence rather than to enhance long-term cell survival. It is also important to select cultures at an appropriate stage of development. In our hands, lipofectamine-based transfection works best on cells between 3 and 10 d after plating. GFP-based fluorescence can be observed as early as 4 h after adding the DNA/lipid complexes to the cells, but expression usually increases over the next ∼12 h and remains steady for days. The ratio of DNA to lipid is critical; to lower expression levels of the tagged construct, we use a combination of expression vector and empty plasmid, keeping the DNA amount constant. An example is included to illustrate the imaging of the microtubule-based vesicular transport of membrane proteins.


Subject(s)
Cytological Techniques/methods , Hippocampus/cytology , Neurons/physiology , Animals , Cell Culture Techniques/methods , Cells, Cultured , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Rats , Staining and Labeling/methods
19.
Traffic ; 13(4): 549-64, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22212743

ABSTRACT

Polarized kinesin-driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule-binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin-2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.


Subject(s)
Kinesins/metabolism , Neurons/metabolism , Organelles/metabolism , Animals , Biological Transport , Cell Movement , Cells, Cultured , Fibroblasts/metabolism , Hippocampus/cytology , Rats
20.
Mol Biol Cell ; 21(4): 572-83, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20032309

ABSTRACT

Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1-mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3beta decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.


Subject(s)
Kinesins/metabolism , Neurons/metabolism , Protein Isoforms/metabolism , Protein Processing, Post-Translational , Tubulin/metabolism , Acetylation , Animals , Cell Polarity , Cells, Cultured , Glycogen Synthase Kinase 3/metabolism , Hippocampus/cytology , Kinesins/genetics , Microtubules/metabolism , Neurons/cytology , Neurons/drug effects , Paclitaxel/pharmacology , Protein Isoforms/genetics , Protein Transport/physiology , Rats , Signal Transduction/physiology , Tubulin/genetics , Tubulin Modulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...