Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863261

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.

2.
Poult Sci ; 103(6): 103736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677064

ABSTRACT

We aimed to determine the onset time of hypophosphatemic rickets and investigate the mechanism of motility impairment through adenosine triphosphate (ATP) production in goslings. Two hundred and sixteen 1-day-old male Jiangnan white geese were randomly divided into 3 groups, with 6 replicates and 12 geese per replicate. Birds were fed on 3 diets: a control diet (nonphytic phosphorus, NPP, 0.38%), a P-deficient diet (PD; NPP, 0.08%), and a high P diet (HP; NPP, 0.80%) for 14 d. Subsequently, all birds were shifted to the control diet for an additional 14 d. The cumulative incidence of lameness increased significantly (P < 0.01) starting on d 4, reaching over 80% on d 7 and 100% on d 12 in the PD group. Drinking and eating frequency decreased from d 4 and d 5, respectively, in the PD group compared to the other groups (most P < 0.01). The PD group exhibited shorter and narrower beaks, higher (worse) curvature scores of the beak and costochondral junctions, swelling caput costae, and dirtier feathers since d 4, in contrast to the control and HP groups (most P < 0.01). The HP had bigger (P < 0.05) beak and sternum sizes than the control groups on d 4 to 11. Leg muscle ATP levels were lower (P < 0.01 or 0.05) on d 4 to 11; in contrast, adenosine diphosphate (d 7-11) was higher in PD compared to the control (P < 0.05). Leg muscle ATP level had positive linear (R2 > 0.40) correlations (r > 0.60) with eating and drinking frequencies on d 7 and 11 (P < 0.01). Bone stiffness, feather cleanliness, and ATP levels recovered (P > 0.05) to the control level, whereas bone size did not recover (P < 0.05) in PD and HP after eating the control diet for 2 wk. The onset time of hypophosphatemic rickets was around 4 d in goslings, and insufficient leg muscle ATP was related to the impaired motility observed in early P-deficient geese.


Subject(s)
Adenosine Triphosphate , Animal Feed , Diet , Geese , Poultry Diseases , Animals , Male , Adenosine Triphosphate/metabolism , Geese/physiology , Diet/veterinary , Poultry Diseases/physiopathology , Animal Feed/analysis , Random Allocation , Muscle, Skeletal/metabolism , Phosphorus, Dietary/metabolism , Rickets/veterinary , Phosphorus/deficiency , Phosphorus/metabolism
3.
Article in English | MEDLINE | ID: mdl-38357717

ABSTRACT

Scar tissue is connective tissue formed on the wound during the wound-healing process. The most significant distinction between scar tissue and normal tissue is the appearance of covalent cross-linking and the amount of collagen fibers in the tissue. This study investigates the efficacy of four types of collagen scaffolds in promoting wound healing and regeneration in a Sprague-Dawley murine model-the histomorphology analysis of collagen scaffolds and developing a deep learning model for accurate tissue classification. Four female rats (n = 24) groups received collagen scaffolds prepared through physical and chemical crosslinking. Wound healing progress was evaluated by monitoring granulation tissue formation, collagen matrix organization, and collagen fiber deposition, with histological scoring for quantification-the EDC and HA groups demonstrated enhanced tissue regeneration. The EDC and HA groups observed significant differences in wound regeneration outcomes. Deep-learning CNN models with data augmentation techniques were used for image analysis to enhance objectivity. The CNN architecture featured pre-trained VGG16 layers and global average pooling (GAP) layers. Feature visualization using Grad-CAM heatmaps provided insights into the neural network's focus on specific wound features. The model's AUC score of 0.982 attests to its precision. In summary, collagen scaffolds can promote wound healing in mice, and the deep learning image analysis method we proposed may be a new method for wound healing assessment.

4.
ACS Omega ; 9(1): 817-827, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222570

ABSTRACT

Inflammation, extracellular matrix metabolic dysfunction, and oxidative stress are key pathogenic characteristics of intervertebral disk degeneration (IVDD), a major pathogenic cause of low back pain. Esculetin possesses anti-injury, anti-inflammation, and antinociceptive properties. This study aimed to explore its role in IVDD. In this research, esculetin exhibited little cytotoxicity to human nucleus pulposus cells (NPCs). Moreover, esculetin increased cell viability under IL-1ß stimulation but attenuated IL-1ß-induced cell apoptosis and caspase-3 activity. Furthermore, IL-1ß-evoked increases in intracellular reactive oxygen species and malondialdehyde (MDA) levels, and decreases in superoxide dismutase (SOD) activity were reversed after esculetin treatment, indicating the antioxidative stress efficacy of esculetin. Esculetin alleviated the inhibitory effects of IL-1ß on the transcription and protein expression of anabolic biomarkers (collagen II and aggrecan), accompanied by decreases in expression and release of catabolic biomarkers MMP-3 and MMP-13 from NPCs. Moreover, IL-1ß exposure enhanced the expression levels of the inflammatory mediator nitric oxide and inflammatory cytokine IL-6 and TNF-α, which were overturned after esculetin treatment. Additionally, esculetin activated the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) to inhibit the activation of nuclear factor κB (NF-κB) signaling in NPCs. Importantly, suppression of Nrf2 signaling reversed the protective efficacy of esculetin against IL-1ß-mediated oxidative injury, matrix metabolism disruption, and inflammatory response in NPCs. Together, esculetin may alleviate IL-1ß-induced dysfunction in NPCs by regulating the Nrf2/HO-1/NF-kb signaling, indicating its potential as a promising therapeutic agent against IVDD.

5.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139009

ABSTRACT

Ascorbic acid is a potent antioxidant and a crucial nutrient for plants and animals. The accumulation of ascorbic acid in plants is controlled by its biosynthesis, recycling, and degradation. Monodehydroascorbate reductase is deeply involved in the ascorbic acid cycle; however, the mechanism of monodehydroascorbate reductase genes in regulating kiwifruit ascorbic acid accumulation remains unclear. Here, we identified seven monodehydroascorbate reductase genes in the genome of kiwifruit (Actinidia eriantha) and they were designated as AeMDHAR1 to AeMDHAR7, following their genome identifiers. We found that the relative expression level of AeMDHAR3 in fruit continued to decline during development. The over-expression of kiwifruit AeMDHAR3 in tomato plants improved monodehydroascorbate reductase activity, and, unexpectedly, ascorbic acid content decreased significantly in the fruit of the transgenic tomato lines. Ascorbate peroxidase activity also increased significantly in the transgenic lines. In addition, a total of 1781 differentially expressed genes were identified via transcriptomic analysis. Three kinds of ontologies were identified, and 106 KEGG pathways were significantly enriched for these differently expressed genes. Expression verification via quantitative real-time PCR analysis confirmed the reliability of the RNA-seq data. Furthermore, APX3, belonging to the ascorbate and aldarate metabolism pathway, was identified as a key candidate gene that may be primarily responsible for the decrease in ascorbic acid concentration in transgenic tomato fruits. The present study provides novel evidence to support the feedback regulation of ascorbic acid accumulation in the fruit of kiwifruit.


Subject(s)
Actinidia , Solanum lycopersicum , Ascorbic Acid/metabolism , Fruit/metabolism , Solanum lycopersicum/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Actinidia/genetics , Actinidia/metabolism , Reproducibility of Results , Antioxidants/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL