Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Acta Biomater ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729547

ABSTRACT

The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.

2.
J Control Release ; 371: 16-28, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38763388

ABSTRACT

Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.

3.
Biomater Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747944

ABSTRACT

Glucose -sensitive delivery systems hold great promise as a therapeutic approach for high-incidence diabetes owing to their ability to release insulin whenever elevated glycemia is detected. However, they are unstable in a hyperglycemic environment, which leads to short-term sustained insulin release. Herein, we designed dually crosslinked insulin polyionic micelles (DCM@insulin) based on triblock polymers of o-glycol and phenylboronic acid-functionalized poly(ethylene glycol)-poly(dimethylamino carbonate)-poly(dimethylamino-trimethylene carbonate) (mPEG-P(AC-co-MPD)-PDMAC and mPEG-P(AC-co-MAPBA)-PDMATC, respectively) for sustained glucose-responsive insulin release. DCM@insulin with a phenylboronic acid ester structure (first crosslinking structure) enhanced glycemic responsiveness by regulating insulin release in a hyperglycemic environment. Additionally, the UV-crosslinking structure (second crosslinking structure) formed by the residual double bonds in AC units endowed DCM@insulin with the ability to effectively protect the loaded insulin against protease degradation and avoid burst release under multiple insulin release. The in vivo findings demonstrated that DCM@insulin effectively maintained glycemic levels (BGLs) within the normal range for 6 h in comparison to single-crosslinked micelles (SCM@insulin). Therefore, the glucose-responsive and dually crosslinked polyionic micelle system exhibits potential as a viable option for the treatment of diabetes.

4.
ACS Appl Mater Interfaces ; 16(14): 17313-17322, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38534029

ABSTRACT

Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.


Subject(s)
Neoplasms , Nitric Oxide , Polyethylene Glycols , Polyethyleneimine , Humans , Nanogels , Hydrogen Peroxide/chemistry , Prospective Studies , Neoplasms/pathology , Glucose Oxidase/chemistry , Catalysis , Glucose , Cell Line, Tumor
5.
Adv Healthc Mater ; 13(7): e2302677, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38245865

ABSTRACT

Oral insulin therapies targeting the liver and further simulating close-looped secretion face significant challenges due to multiple trans-epithelial barriers. Herein, ursodeoxycholic acid (UDCA)-decorated zwitterionic nanoparticles (NPs) (UC-CMs@ins) are designed to overcome these barriers, target the liver, and respond to glycemia, thereby achieving oral one-time-per-day therapy. UC-CMs@ins show excellent mucus permeability through the introduction of zwitterion (carboxy betaine, CB). Furthermore, UC-CMs@ins possess superior cellular internalization via proton-assisted amino acid transporter 1 (PAT1, CB-receptor) and apical sodium-dependent bile acid transporter (ASBT, UDCA-receptor) pathways. Moreover, UC-CMs@ins exhibit excellent endolysosomal escape ability and improve the basolateral release of insulin into the bloodstream via the ileal bile acid-binding protein and the heteromeric organic solute transporter (OSTα- OSTß) routes compared with non-UDCA-decorated C-CMs@ins. Therefore, CB and UDCA jointly overcome mucus and intestinal barriers. Additionally, UC-CMs@ins prevent insulin degradation in the gastrointestinal tract for crosslinked structure, improve insulin accumulation in the liver for UDCA introduction, and effectively regulate glycemia for "closed-loop" glucose control. Surprisingly, oral ingestion of UC-CMs@ins shows a superior effect on glycemia (≈22 h, normoglycemia) and improves postprandial glycemic levels in diabetic mice, illustrating the enormous potential of the prepared NPs as a platform for oral insulin administration in diabetes treatment.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Mice , Animals , Insulin/therapeutic use , Ursodeoxycholic Acid/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Liver , Bile Acids and Salts/therapeutic use , Administration, Oral
6.
Foodborne Pathog Dis ; 21(4): 257-267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38215267

ABSTRACT

Salmonella enterica is one of the most important zoonotic pathogens causing foodborne gastroenteritis worldwide. Outer membrane vesicles (OMVs) are lipid-bilayer vesicles produced by Gram-negative bacteria, which contain biologically active components. We hypothesized that OMVs are an important weapon of S. enterica to initiate enteric diseases pathologies. In this study, the effects of S. enterica OMVs (SeOMVs) on intestinal microbiota and intestinal barrier function were investigated. In vitro fecal culture experiments showed that alpha diversity indexes and microbiota composition were altered by SeOMV supplementation. SeOMV supplementation showed an increase of pH, a decrease of OD630 and total short chain fatty acid (SCFA) concentrations. In vitro IPEC-J2 cells culture experiments showed that SeOMV supplementation did not affect the IPEC-J2 cell viability and the indicated genes expression. In vivo experiments in mice showed that SeOMVs had adverse effects on average daily gain (p < 0.05) and feed:gain ratio (p < 0.05), and had a tendency to decrease the final body weight (p = 0.073) in mice. SeOMV administration decreased serum interleukin-10 level (p < 0.05), decreased the relative abundance of bacteria belonging to the genera BacC-u-018 and Akkermansia (p < 0.05). Furthermore, SeOMV administration damaged the ileum mucosa (p < 0.05). These findings suggest that SeOMVs play an important role in the activation of intestinal inflammatory response induced by S. enterica, and downregulation of SCFA-producing bacteria is a possible mechanism.


Subject(s)
Gastroenteritis , Gastrointestinal Microbiome , Salmonella enterica , Animals , Mice , Intestinal Barrier Function , Body Weight
7.
Biomater Sci ; 12(2): 507-517, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38088652

ABSTRACT

"Closed-loop" insulin-loaded microneedle patche shows great promise for improving therapeutic outcomes and life quality for diabetes patients. However, it is typically hampered by limited insulin loading capacity, random degradation, and intricate preparation procedures for the independence of the "closed-loop" bulk microneedles. In this study, we combined the solubility of microneedles and "closed-loop" systems and designed poly(vinyl alcohol)-based bulk microneedles (MNs@GI) through in situ photopolymerization for multi-responsive and sustained hypoglycemic therapy, which significantly simplified the preparation process and improved insulin loading. GOx/insulin co-encapsulated MNs@GI with a phenylboronic ester structure improved glycemic responsiveness to control the insulin release under high glucose conditions and reduced inflammation risk in the normal skin. MNs@GI could further degrade to increase insulin release due to the crosslinked acetal-linkage hydrolysis in the presence of gluconic acid, which was caused by GOx-mediated glucose-oxidation in a hyperglycemic environment. The in vivo results showed that MNs@GI effectively regulated glycemic levels within the normal range for approximately 10 h compared to that of only insulin-loaded microneedles (MNs@INS). Consequently, the highly insulin-loaded, multi-responsive, and pH-triggered MN system has tremendous potential for diabetes treatment.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Animals , Humans , Hypoglycemic Agents/therapeutic use , Drug Delivery Systems/methods , Insulin/chemistry , Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Hydrogen-Ion Concentration
8.
Food Funct ; 14(23): 10314-10328, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37916395

ABSTRACT

There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Lacticaseibacillus rhamnosus , Probiotics , Mice , Animals , CD8-Positive T-Lymphocytes , Cell Death , Immunotherapy , Colorectal Neoplasms/drug therapy
9.
J Control Release ; 364: 261-271, 2023 12.
Article in English | MEDLINE | ID: mdl-37839641

ABSTRACT

Glioblastoma multiforme (GBM) remains incurable in clinical, nanotechnology-based drug delivery strategies show promising perspective in alleviating GBM, while limited blood-brain-barrier (BBB) permeation, short blood half-live accompanied by the poor tumor accumulation and penetration, significantly restrict the therapeutic outcomes. Herein, a versatile super-small zwitterionic nano-system (MCB(S)) based on carboxybetaine (CB) zwitterion functionalized hyperbranched polycarbonate (HPCB) is developed to overcome the brain delivery challenges. After grafting with amino-functionalized IR780 (free IR780), the ultimate paclitaxel (PTX)-encapsulated micelles (MCB(S)-IR@PTX) are precisely activated by near-infrared (NIR) for accelerated drug release and effective combinational GBM therapy. Importantly, MCB(S)-IR@PTX with the crosslinked structure and CB zwitterion prolongs blood-circulation, and CB-zwitterion further facilitates BBB-traversing through betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) pathway. Combined with the benefit of super small-size, MCB(S)-IR@PTX highly accumulates at tumor sites and penetrates deeply, thus efficiently inhibiting tumor growth and strikingly improving survival time in U87MG orthotopic GBM-bearing mouse model. The ingenious nanoplatform furnishes a versatile strategy for delivering therapeutics into the brain and realizing efficient brain cancer therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/pathology , Micelles , Blood-Brain Barrier , Cell Line, Tumor , Drug Delivery Systems , Paclitaxel , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
10.
Int J Pharm ; 646: 123458, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37776964

ABSTRACT

Although complexation technique has been documented as a promising strategy to enhance the dissolution rate and bioavailability of water-insoluble drugs, prediction of the enhanced drug solubility related to clathrate compositions and operating conditions is still a challenge. Herein, clathrate compositions (drug content (DC), drug molecular weight (M) and molar ratio (Ratio)), operating conditions (drug concentration (C), pH, pressure (P), temperature (T) and dissolution time (t)) under the different excipients (PEG, PVP, HPMC and cyclodextrin) as main solubilizers of the clathrates condition as input parameters were used to predict two indexes (drug dissolved percentage and dissolution efficiency) simultaneously through machine learning methodfor the first time. The results show that PVP as the main solubilizer of clathrates had higher prediction accuracy to the drug dissolved percentage, and HPMC as the main solubilizer of clathrates had higher prediction accuracy to the drug dissolution efficiency. In addition, the influence of various factors and interactions on the target variables were analyzed. This study affords achievable hints to the quantitative prediction of the drug solubility affected by various compositions and different operating conditions.

11.
Ultrason Sonochem ; 99: 106590, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690262

ABSTRACT

FePO4 (FP) particles with a mesoporous structure amalgamated by nanoscale primary crystals were controllably prepared using an ultrasound-intensified turbulence T-junction microreactor (UTISR). The use of this type of reaction system can effectively enhance the micro-mixing and remarkably improve the mass transfer and chemical reaction rates. Consequently, the synergistic effects of the impinging streams and ultrasonic irradiation on the formation of mesoporous structure of FP nanoparticles have been systematically investigated through experimental validation and CFD simulation. The results revealed that the FP particles with a mesoporous structure can be well synthesised by precisely controlling the operation parameters by applying ultrasound irradiation with the input power in the range of 0-900 W and the impinging stream volumetric flow rate in the range of 17.15-257.22 mL·min-1. The findings obtained from the experimental observation and CFD modelling has clearly indicated that there exists a strong correlation between the particle size, morphology, and the local turbulence shear. The application of ultrasonic irradiation can effectively intensify the local turbulence shear in the reactor even at low Reynolds number based on the impinging stream diameter (Re < 2000), leading to an effective reduction in the particle size (from 273.48 to 56.1 nm) and an increase in the specific surface area (from 21.97 to 114.97 m2·g-1) of FP samples. The FPirregularly-shaped particles prepared by UTISR exhibited a mesoporous structure with a particle size of 56.10 nm, a specific surface area of 114.97 m2·g-1and a total pore adsorption volume of 0.570 cm3·g-1 when the volumetric flow rate and ultrasound power are 85.74 mL·min-1and 600 W, respectively.

12.
PLoS One ; 18(8): e0285497, 2023.
Article in English | MEDLINE | ID: mdl-37582073

ABSTRACT

The risk transmission process between international construction projects largely contributes to the dilemma of risk management of international construction projects. Firstly, this paper adopts methods such as literature review and brainstorming to identify the risks in international construction projects from all aspects and all stages. Connections between risks is built by the Delphi method and further construct the international construction project risk network. Combined with "ucinet", a network visualization analysis tool, overall feature parameters and local feature parameters are presented for analysis as the focus. Starting from this, the risk transmission in complex construction projects is analyzed to identify key risks and transmission relationships and reveal inherent laws of risk transmission. Accordingly, when formulating risk prevention strategies for international engineering projects, it is proposed that measures to curb risk transmission should be effectively adopted from both key risks and their transmission relationships.


Subject(s)
Construction Industry , Risk Management
13.
Carbohydr Polym ; 318: 121124, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479455

ABSTRACT

A novel polysaccharide (NAP-3) was isolated and purified from Naematelia aurantialba after water extraction. The structure of NAP-3, which was determined by FT-IR, HPLC, GC-MS, and NMR, indicated that NAP-3 was a homogeneous polysaccharide with the molecular weight of 428 kDa, mainly consisted of ß-1, 3-D-Manp, ß-1, 2, 3-D-Manp, ß-D-Xylp, ß-1, 4-D-Glcp, ß-1, 4-D-Rhap in a molar ratio of 6.49: 1.11: 2.4: 0.13: 0.83. In vitro α-glucosidase and α-amylase inhibitory assay showed that NAP-3 had a low IC50 value, which exhibited similar enzyme inhibitory activity as acarbose. NAP-3 was evaluated as an adjuvant with metformin for antidiabetic therapy in HFD/STZ-induced diabetic mice and insulin resistance HepG2 cells. The combination of NAP-3 and metformin in diabetic mice exhibited significant hypoglycemic activity, reducing body weight, serum insulin levels, glucose tolerance, insulin tolerance, and increasing antioxidant levels compared to metformin alone. The combination of NAP-3 and metformin improved oxidative stress by increasing ROS clearance, thereby enhancing glucose uptake in HepG2 cells. This study provided new data for the study of Naematelia aurantialba polysaccharides and offers a new adjuvant therapy for the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Metformin , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Spectroscopy, Fourier Transform Infrared , Adjuvants, Immunologic
14.
Acta Biomater ; 166: 593-603, 2023 08.
Article in English | MEDLINE | ID: mdl-37220820

ABSTRACT

Prodrug assembled nanoparticles integrate the merits of both prodrug and nanoparticle, which significantly improve pharmacokinetic parameters, enhance tumorous accumulation and decrease adverse effects, while they are challenged by disassembly upon dilution in blood, masking the superiority of nanoparticles (NPs). Herein, a reversibly "double locked" hydroxycamptothecin (HCPT) prodrug nanoparticle decorated with cyclic RGD peptide (cRGD) is developed for safe and efficient chemotherapy of orthotopic lung cancer in mice. HCPT prodrug is constructed from acetal (ace)-linked cRGD-PEG-ace-HCPT-ace-acrylate polymer, which is self-assembled into the nanoparticles with "the first lock" of HCPT. Then the nanoparticles undergo the in situ UV-crosslinking of the acrylate residues for constructing "the second lock" of HCPT. The obtained "double locked" nanoparticles (T-DLHN) with simple and well-defined construction are demonstrated to possess extremely high stability against 100-fold dilution and acid-triggered "unlock" including de-crosslinking and liberation of the pristine HCPT. In an orthotopic lung tumor of mouse model, T-DLHN reveals a prolonged circulation time of about 5.0 h, superb lung tumor-homing capacity with tumorous drug uptake of about 7.15%ID/g, resulting in significantly boosted anti-tumor activity and reduced adverse effects. Hence, these nanoparticles utilizing "double lock" and acid-triggered "unlock" strategies represent a unique and promising nanoplatform for safe and efficient drug delivery. STATEMENT OF SIGNIFICANCE: Prodrug assembled nanoparticles have the unique properties of the well-defined structure, systemic stability, improved pharmacokinetics, passive targeting and decreased adverse effects. However, prodrug assembled NPs would disassemble against extensive dilution in the blood circulation when intravenously injected into the body. Herein, we have designed a cRGD-directed reversibly "double-locked" HCPT prodrug nanoparticle (T-DLHN) for safe and efficient chemotherapy of orthotopic A549 human lung tumor xenografts. Upon intravenous injection, T-DLHN can overcome the shortcoming of disassembly against extensive dilution, prolong the circulation time due to the "double locked" configuration and then mediate targeted drug delivery into the tumors. After uptaken into the cells, T-DLHN undergoes concurrent de-crosslinking and liberation of HCPT under acidic condition for enhanced chemotherapeutic efficacy with negligible adverse effects.


Subject(s)
Lung Neoplasms , Nanoparticles , Prodrugs , Humans , Mice , Animals , Prodrugs/pharmacology , Prodrugs/chemistry , Cell Line, Tumor , Camptothecin/pharmacology , Camptothecin/therapeutic use , Drug Delivery Systems , Lung Neoplasms/drug therapy , Nanoparticles/chemistry
15.
J Org Chem ; 88(8): 4995-5006, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36745403

ABSTRACT

A novel and efficient strategy for the construction of difluorocarbonyl-oxindole and difluorocarbonyl-isoquinoline-1,3-dione derivatives involving nickel-catalyzed intramolecular Heck-type cyclizations followed by intermolecular cross-couplings has been developed. This approach features high functional group tolerance, broad substrate scope, and operational simplicity under mild conditions, thus providing a new method for the rapid difluorocarbonyl-functionalization of alkenes to construct the structurally diversified five- and six-membered heterocycles.

16.
ACS Appl Mater Interfaces ; 15(2): 2725-2736, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598373

ABSTRACT

Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).


Subject(s)
Micelles , Neoplasms , Humans , Drug Delivery Systems , Polycarboxylate Cement , Neoplasms/drug therapy , Neoplasms/metabolism , Paclitaxel/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Polyethylene Glycols/chemistry
17.
Adv Healthc Mater ; 12(6): e2202266, 2023 01.
Article in English | MEDLINE | ID: mdl-36415059

ABSTRACT

Mitoxantrone (MTO) is clinically utilized for treating hormone-refractory prostate cancer (PCa), however, the therapeutic outcome is far from optimal due to the lack of proper drug carrier as well as the inherent MTO detoxification mechanisms of DNA lesion repair and anti-oxidation. Herein, a bombesin-installed nanoplatform combining the chemotherapeutic MTO and the chemotherapeutic sensitizer of nitric oxide (NO) is developed based on MTO-loaded macromolecular NO-donor-containing polymeric micelles (BN-NMMTO ) for targeted NO-sensitized chemotherapy against PCa. BN-NMMTO actively target and accumulates in PCa sites and are internalized into the tumor cells. The macromolecular NO-donor of BN-NMMTO undergoes a reductive reaction to unleash NO upon intracellular glutathione (GSH), accompanying by micelle swelling and MTO release. The targeted intracellular MTO release induces DNA lesion and reactive oxygen species (ROS) generation in tumor cells without damage to the normal cells, and MTO's cytotoxicity is further augmented by NO release via the inhibition of both DNA repair and anti-oxidation pathways as compared with traditional MTO therapies.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Micelles , Antineoplastic Agents/therapeutic use , Nitric Oxide Donors/therapeutic use , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , Glutathione , Prostatic Neoplasms/drug therapy , Cell Line, Tumor
18.
Biomater Sci ; 11(3): 975-984, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36541189

ABSTRACT

Oral insulin delivery has been extensively considered to achieve great patient compliance and convenience as well as favourable glucose homeostasis. However, its application is highly limited by the low insulin bioavailability owing to gastrointestinal barriers. Herein, we developed crosslinked zwitterionic microcapsules (CB-MCs@INS) based on a carboxyl betaine (CB)-modified poly(acryloyl carbonate-co-caprolactone) copolymer via the combination of microfluidics and UV-crosslinking to improve oral insulin delivery. CB-MC@INS microcapsules with high drug loading capacity (>40%) protected insulin from acid degradation in the harsh gastric environment. Through the introduction of CB-moieties, CB-MCs@INS possessed superior affinity for epithelial cells and improved insulin transport as compared to non-CB modified MCs@INS (5.15-fold), which was mainly attributed to the CB-mediated cell surface transporter via the PAT1 pathway. Moreover, the oral administration of CB-MCs@INS exhibited an excellent hypoglycaemic effect and maintained normoglycemia for up to 8 h in diabetic mice, demonstrating the great potential of crosslinked zwitterionic microcapsules as an oral insulin delivery platform for diabetes therapy.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Mice , Animals , Insulin , Drug Delivery Systems , Drug Carriers/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Capsules , Administration, Oral
19.
Int J Biol Macromol ; 223(Pt A): 1308-1319, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36395935

ABSTRACT

In this study, the immunity-enhancing effect of ginger polysaccharides UGP1 and UGP2 on CTX-induced immunosuppressed mice was evaluated. The results showed that ginger polysaccharide could effectively alleviate the symptoms of weight loss and dietary intake reduction induced by CTX, increase fecal water content, reduce fecal pH, and protect immune organs of immunosuppressed mice. In addition, ginger polysaccharides also stimulated the secretion of cytokines IL-2, IL-4, TNF-α and immunoglobulin Ig-G in the serum of mice, increased the expression of Occludin and Claudin-1, and restored the level of short-chain fatty acids in the intestine to improve immune deficiency. Furthermore, ginger polysaccharides significantly reduced the relative abundance ratio of the Firmicutes and Bacteroidetes in mice and increased the relative abundance of Verrucomicrobia and Bacteroidetes at the phylum level. At the family level, ginger polysaccharides increased the relative abundance of beneficial bacteria such as Muribaculaceae, Bacteroidaceae and Lactobacillaceae, and decreased the relative abundance of harmful bacteria such as Rikenellaceae and Lachnospiraceae. Spearman correlation analysis indicated that ginger polysaccharides could enhance intestinal immunity by modulating gut microbiota associated with immune function. These results indicated that ginger polysaccharides have the potential to be a functional food ingredients or a natural medicine for the treatment of intestinal barrier injury.


Subject(s)
Gastrointestinal Microbiome , Zingiber officinale , Mice , Animals , Intestines , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Cyclophosphamide/adverse effects , Bacteroidetes/metabolism
20.
Langmuir ; 38(45): 13955-13962, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36377412

ABSTRACT

Three self-assembled nanoaggregates (CPUL1-LA NAs, CPUL1-DA NAs, and CPUL1-AA NAs) were constructed through lipoic acid (LA), dithiodipropionic acid (DA), and adipic acid (AA) decorated TrxR inhibitor (CPUL1), respectively. Measurements of DLS, TEM, UV-vis, fluorescence, 1H NMR, ITC, and MTT assays verified disulfide-containing CPUL1-LA NAs and CPUL1-DA NAs spontaneously assembled carrier-free nanoparticles in aqueous solution, which possessed high drug contents, excellent stability, improved cytotoxicity against HUH7 hepatoma cells, and potential biosafety because of low cytotoxicity against L02 normal cells. In contrast, disulfide-free CPUL1-AA NAs happened to aggregate and precipitate after 48 h, which showed distinct instability in aqueous solution. Thus, disulfide units seemed to be crucial for constructing controllable and stable nanoaggregates. While measuring the reduction of nanoaggregates by TrxR/NADPH and GSH/GR/NADPH, cyclic disulfide of LA and linear disulfide of DA were verified to endow the nanoaggregates with targeting ability to respond specifically to TrxR over GSH. Furthermore, by tests of flow cytometry, fluorescence images, and CLSM, both CPUL1-LA NAs and CPUL1-DA NAs displayed a faster cellular uptake characteristic to be internalized by cancer cells and could generate more abundant ROS to induce cell apoptosis than that of free CPUL1, resulting in significantly improved antitumor efficacy against HUH7 cells in vitro.


Subject(s)
Disulfides , Nanoparticles , Disulfides/pharmacology , Disulfides/chemistry , NADP , Nanoparticles/chemistry , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...